
The Skiplist-Based LSM Tree

ARON SZANTO, Harvard University
Log-Structured Merge (LSM) Trees provide a tiered data
storage and retrieval paradigm that is a�ractive for
write-optimized data systems. Maintaining an e�cient
bu�er in memory and deferring updates past their initial
write-time, the structure provides quick operations over
hot data. Because each layer of the structure is logically
separate from the others, the structure is also conducive
to opportunistic and granular optimization. In this pa-
per, we introduce the Skiplist-Based LSM Tree (sLSM), a
novel system in which the memory bu�er of the LSM is
composed of a sequence of skiplists. We develop theoret-
ical and experimental results that demonstrate that the
breadth of tuning parameters inherent to the sLSM al-
lows it broad �exibility for excellent performance across
a wide variety of workloads.

1 INTRODUCTION
As data scales, transactional updates and reads be-
come more costly. Traditional systems do not dif-
ferentiate between hot and cold data, foregoing sig-
ni�cant optimization opportunities, since in many
applications users need to access the most recent
data the fastest. �e LSM tree, introduced in 1995
by O’Neil et al.[2], provides a mechanism for quick
updates, deletes, and writes by collecting them in
a pool of active keys before pushing them to sec-
ondary storage when the pool is full. By arrang-
ing secondary storage in tiers, the cost of merging
the bu�er to disk is amortized, allowing for e�-
cient writes, while the maintenance of hot keys
in memory allows for performant lookups over
recent data. �e tiered structure of data also pro-
vides a natural opportunity for indexing. A variety
of indexing structures, including fence pointers,
zone maps, and Bloom �lters are commonly used
to minimize unnecessary disk accesses. In addi-
tion, compression algorithms can be used to shrink

2016. XXXX-XX/2016/1-ART1 $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

the memory and disk footprint of the data both
in memory and on disk. Because LSM trees have
disparate and independent components, there is
a large space for optimization. However, the pa-
rameters of interaction between the components
are also a crucial part of good performance. In this
paper, we describe a novel LSM system that uses
cache-conscious skiplists in memory, along with
Bloom �lter and fence pointer indexing, to achieve
excellent throughput. �e remainder of this paper
will proceed as follows: Section 2 will detail the
design of the Skiplist-Based LSM (sLSM), includ-
ing the in-memory component, the on-disk com-
ponent, indexing structures, key algorithms, theo-
retical guarantees, and the range of design knobs;
Section 3 will provide extensive experimental re-
sults, including parameter tuning and performance
analysis; and Section 4 will discuss and conclude.

2 SLSM DESIGN
�e sLSM has two macroscopic components: the
in-memory bu�er and the disk-based store. �e
in-memory section is composed of a set of data
structures that is optimized for quick insert and
lookup on the bu�ered data. �e disk-based store
is composed of a tiered layer storage that scales by
a constant factor with each tier.

2.1 Memory Bu�er
�e memory bu�er consists of R runs, indexed by
r . In the sLSM , one run corresponds to one skiplist.
Only one run is active at any one time, denoted
by the index ra . Each run can contain up to Rn
elements. An insert occurs as follows: if the current
run is full, make the current run a new, empty
one. If there is no space for a new run: i) merge
a proportionm of the existing runs in the bu�er
to secondary storage; ii) set the active run to a
new, empty one. Insert the key-value pair into the

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:2 • Aron Szanto

active run. A lookup is similar: starting from the
newest run and moving towards the oldest, search
the skiplist for the given key. Return the �rst one
found (as it is the newest). If not found, then search
disk storage.

2.2 Skiplists
Skiplists are probabilistic data structures that pro-
vide for fast search within an ordered sequence of
values. �ey are composed of decreasingly sparse
sorted runs of values that are set in parallel, so that
a search consists of searching a run until a key is
found that is greater than the desired one, then
repeating the same process on the next-densest
run, until the correct key is found. With some care-
ful optimization, these structures can be powerful,
yet leave only a small memory footprint. Two op-
timizations implemented in sLSM are presented
below.

2.2.1 Fast Random Levels. One of the vital steps
in skiplist insertion is choosing the ”level” that the
element to be inserted will occupy. Ideally, the
distribution of levels follows a geometric distribu-
tion with parameter p; in practice, p = 0.5 is stan-
dard, and also has nice mathematical properties
regarding optimal average runtime [3]. �e sLSM
uses hardware optimization to generate random
levels quickly. Rather than an iterative mechanism
that increments the level with probability p at each
round, stopping when the level is not incremented,
we propose anO(1) solution: generateMAXLEVEL
random bits, whereMAXLEVEL is the maximum
level for any element. Return the result of the hard-
ware builtin ”�nd �rst set bit” function (standard
on x86-64). Since each bit is random, the probabil-
ity that the nth bit is the �rst one that is set is 2�n,
which is exactly the geometric distribution with
parameter p = .5 that is needed. Our skiplists use
MAXLEVEL = 16, which was experimentally de-
termined to be optimal. �ere is a tradeo� between
the probabilistic speed of retrieval and the skiplist
size, including the amount of data needed to be
loaded into the cache for a lookup. AsMAXLEVEL

gets larger, there is a higher probability that nodes
can be skipped, leading to faster lookup for higher-
valued keys. However, the list of forward pointers
is larger, and may not �t in the cache, leading to
cache misses that o�set the performance gains of
high-level nodes. We found that ��ing the forward
pointer list into two cache lines is optimal, and
theorize that this is due to the fact that the second
cache line is only accessed about 1 � (.58) = 0.4%
of the time. When it is accessed, the speedup due
to skipping large swaths of the list outweighs the
infrequent performance drawdown of loading the
extra cache line.

2.2.2 Vertical Arrays, Horizontal Pointers. �e
other skiplist optimization involves the way that
the skiplist traverses levels. While the di�eren-
tial densities of the levels precludes an array-based
structure in the horizontal direction, it is wasteful
to include links from nodes of value k to another
node of value k on the next level. Instead, in our
implementation a skiplist node includes one key,
one value, and an array of pointers to other skiplist
nodes. �is array can be thought of as a vertical
column of level pointers, where pointers above the
node’s level are null and each pointer below points
to the next node on that particular level. In this
way, skipping down a level is a ma�er of reading a
value that was already loaded into the cache, rather
than chasing a pointer somewhere random in mem-
ory. Because we implemented the skiplist in this
way from the beginning we do not report di�eren-
tial performance between this cache-conscious and
the alternative, naive way. �e following graphic
summarizes this optimization nicely.1

1Source: h�p://ticki.github.io/blog/skip-lists-done-right/
(MIT LICENSE)

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

The Skiplist-Based LSM Tree • 1:3

2.3 Memory Bu�er Indexing
Bloom �lters are space-e�cient probabilistic data
structures that are used to test whether an element
is in a set. Using a series of hash functions and a
bitset, the �lter can provide a strong probabilistic
guarantee: an element will never induce a false-
negative result under a test for membership, and
an element will only induce a false-positive result
up to some error probability � , a value that is cho-
sen by the user and that is traded o� against the
space occupied by the �lter. Bloom �lters �nd im-
portant use in the sLSM when paired one-to-one
with runs in memory and on disk. Rather than
incur a high cost by searching for a key in every
run, the �lter is consulted �rst; if it returns neg-
ative, we can safely skip that run, because of the
�lter’s no-false-negative guarantee. In this way,
we’ll only search a proportion � of the runs that we
don’t need to, which could result in a signi�cant
time saving for lookups. In our implementation,
Bloom �lters are leveraged by pairing each con-
sideration of a run with a �lter test; if it fails, we
simply skip that run. We use the Murmur3 hash
function and utilize the mathematical technique of
”double hashing”, allowing us to quickly generate
the k hash values necessary without recomputing
the entire hash k times by using a linear combina-
tion of two hashes for each. We also keep track
of the maximal and minimal key in each run for
low-cost, high-granularity �ltering by run.

2.4 Disk-Backed Storage
�e disk-backed store is for more permanent stor-
age and is only touched by merges from the mem-
ory bu�er. �ere are L disk levels, each withD runs
on each level. A run is an immutable sequence of
sorted key-value pairs, and is captured within one
memory-mapped �le on disk. Levels grow by runs
until they hit the threshold D, and then a new level
is added, incrementing L. Each disk run is indexed
similarly to the in-memory run, withmax/min keys
and Bloom �lters. Additionally, we use fence point-
ers to index into disk runs for lookups. �ese are

�xed-width indices that store the key of elements
in increments of some logical page size in memory.
To look up a key in a disk run, we �nd the fence
pointers that bound the key via binary search, then
search for the key in that range on disk, also by bi-
nary search. �is reduces disk accesses by a factor
of logn

log µ , where µ is the fence pointer page size.

2.5 Merging
One of the most important implementation details
of the sLSM is the merging algorithm. When the
bu�er becomes full, a fraction m of the runs is
�agged and their elements collected and sorted,
then wri�en to the shallowest disk level’s next
available run. In this way, adjacent levels share
the following relationship: the size of a level’s runs
is identical to the total size of its shallower neigh-
bor multiplied by the fraction of runs mergedm.
Analogously, the number of elements at level k
is O((mD)k). Merging is not as simple as copying
from �le to �le, however. A disk level might be
full, requiring a cascade of merges down to lower
disk levels. �is complex operation is quite nu-
anced: though the runs being merged are individ-
ually sorted, the resulting run needs to be sorted.
Because runs at lower levels do not �t in memory,
some optimizations are necessary to save both time
and space. Moreover, when several runs from level
k contain the same key, the value that remains tied
to that key on level k + 1 must be the most recently
wri�en, i.e., the one that came from the newest run
on level k . �e naive algorithm for merging n items
from k sorted lists is O(nk), where each element
is compared against the minimal unwri�en item
from each list. We propose a heap-based merg-
ing algorithm that runs in O(n log(mD)) time and
O(mD) space, where n is the number of elements
being merged. Algorithm 1 demonstrates our ap-
proach, which uses a min-heap whose constituents
are pairs of key-value elements and integers denot-
ing from which run that key-value element was
taken.
�e heap disgorges key-value pairs in key order;

this entails that the result will be sorted, and in

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:4 • Aron Szanto

ALGORITHM 1: HeapMerge
Data: Runs to merge R1...Rk , min-heap H , result run S
Result: Data from runs to merge are in key-order in S,

with the latest value corresponding to each
key.

for each run r 1…k do
push(H , (R[r][0], r));

end
j := -1;
lastKe� := None;
lastK := None;
Heads := Array[k];
Heads[i] := 0 for all i ;
while size(H) > 0 do

(e,k) := pop(H);
if e.key == lastKey then

if lastK < k then
S[j] = e;

else
end

else
j = j + 1;
S[j] = e;

end
lastKey = e.key;
lastK = k;
if Heads[k] < size(R[k]) then

Heads[k] = Heads[k] + 1;
push(H , R[k][Heads[k]]);

else
end
Construct-Index(S);

end

the case of multiple values for the same keys, only
the highest-ranked run’s value is wri�en into the
result. �ough we do not include it in the formal
algorithm speci�cation, we mention that our imple-
mentation involves knowledge as to whether the
merge in progress is writing to a new level below
all the others. In that case, keys �agged for delete
are not wri�en to the bu�er at all. �e time and
space bounds are trivially derived by noticing that
n elements are popped o� the heap, and the heap is

of sizemD. In our implementation, we also usemul-
tithreaded merging to decrease our latency. When
an insertion triggers a merge, a dedicated merge
thread takes ownership of the runs to merge and
executes the merge in parallel, allowing the main
thread to rebuild the bu�er and continue to answer
queries. If a lookup request comes while the merge
thread is executing the merge, the main thread
searches the memory bu�er for the requested key,
and if unsuccessful, waits for themerge to complete
before querying the disk levels.

2.6 Insertion
�e algorithm for insertion into the sLSM is given
in Algorithm 2. �e Do-Merge algorithm takes

ALGORITHM 2: Put
Data: key k, value v to insert, runs runs[] of sLSM,

Bloom �lters B[] of sLSM, active run index ra ,
size of runs Rn , number of runs R

Result: key-value pair is inserted into the sLSM
if size(runs[ra]) == Rn then

ra = ra + 1
else
end
if ra == R then

Do-Merge(1);
ra = ra �mR;

else
end
insert(runs[ra], k, v);
insert(B[ra], k, v);

one parameter, which represents the disk level to
merge runs to. In our implementation, it is a recur-
sive function that merges successive levels until
there is a free run to merge to, or it creates a new
level at the bo�om of the sLSM. Do-Merge calls
HeapMerge when it �nds an empty run to merge
to, or a�er it creates a new, empty level. It is at this
point that HeapMerge receives information as to
whether the merged level is the last, in which case
deletes are ‘’commi�ed”, i.e., not wri�en to disk.
Expected insertion time is calculated as follows:

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

The Skiplist-Based LSM Tree • 1:5

with probability RnRm�1
RnRm

insertion is into a skiplist
with no merge necessary, i.e.,O(logRn). With prob-
ability 1

RnRm
, a merge is necessary. Merging RnRm

elements to disk level 1 takes O(RnRm(1 � log �))
time, given the necessity to copy each element for
each element in the merged runs, as well as to
write a Bloom �lter (which requires O(�n log �)
time for n elements). With probability 1

RnRmD , the
current insertion is the one that necessitated the
�rst level to merge down to level two, which is an
O(RnRm2D logDm) operation. By induction, the
probability that the current insert causes a merge
down to level k is 1

RnRmk+1Dk , meaning that the total
insertion time simpli�es as

RnRm�1
RnRm

O(logRn) +
PL

k=0
RnRmk+1Dk (1�log �) logDm

RnRmk+1Dk

= O(logRn + (1 � log �)L logDm)

with L = O(logn), where n is the number of ele-
ments in the skiplist; this is due to the fact that
levels are added at exponentially increasing thresh-
olds of n.

2.7 Lookup
Lookups all follow the same pa�ern: Starting with
the memory bu�er and moving downwards to disk
levels, query runs in newest-to-oldest order. For
each run query, check if the key is between the
min and max key for that run. If so, query the
Bloom �lter. If positive, then search the run. For
in-memory runs, this entails searching the skiplist.
For disk runs, this involves a binary search of fence
pointers in order to �nd two �le locations that
bound the key, if it exists. �en a binary search
is performed between those two locations and the
key’s value, if any, is returned. �e worst case for
a lookup is that the key doesn’t exist, meaning that
the algorithm has to search each level and each
run. Noting that the time to query a Bloom �lter
with k = � log �

log 2 hash functions is O(� log �), the

expected runtime of a lookup is

O


(�� log �)

✓
(R logRn) +

LX
l

DX
k

log
✓
RnRmkDk

µ

◆
+ log µ

◆�

where µ is the number of elements per fence pointer.
�is expression simpli�es to

O((�� log �)(R logRn + DL logRn
+ DL logR + D2L logDm))

In practice, Rn >> R, so average lookup time is
approximately
O
�
(�� log �)

�
(R + DL) logRn + D2L log (Dm)

� �
.

2.8 Delete
Deletes are implemented quite simply: to delete
a key, simply insert that key paired with a value
that signi�es a deleted key. When a lookup comes
across this value for this key, it immediately re-
turns with a failure to �nd the key. Last, when this
deleted key-value pair is merged down to start a
new deepest level, it is omi�ed from the result set,
as it is no longer needed to supersede any previous
keys.

2.9 Range
Range queries involve looking up, for each run, all
the elements in the range. For skiplists, this is as
simple as locating the node corresponding to the
smallest key greater than or equal to the �rst key in
the range. �en, simply follow the skiplist’s point-
ers until the current node is greater than or equal
to the second key in the range, or else the end of
the list has been reached. For disk-based runs, we
�rst �lter by key, then do only the 1 or 2 lookups
we need to �nd the indexes in the run that frame
the range. From there, we construct a hash table as
follows: Starting with the newest run and working
backwards towards the oldest, �nd all elements in
the range, and for each, 1) insert the key and value

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:6 • Aron Szanto

Table 1. Parameters and Values

Parm Meaning Range
R Number of runs Z > 0
Rn Elements per run Z > 0
� Bloom �lter FP rate (0, 1)
D Number of disk runs per level Z > 0
m Fraction of runs merged (0, 1]
µ Fence pointer page size Z > 0

into the hash table and 2) if the element is not a
delete or already in the table, write it to the result
set. �e hash table guarantees that only the newest
non-deleted values will remain in the result set. For
our hash table, we again use the Murmur3 hash
function. We use linear probing rather than chain-
ing to optimize for small key-value pairs (as the test
workload will be integers), and keep true key-value
objects in the table, rather than pointers, in order to
remain cache-optimal. When the hash table is more
than half full, we double its size and rehash each
element, leading to amortized O(1) insertion and
true constant-time probing. Because collecting ele-
ments in the range in both skiplists and disk runs is
a linear-time operation, and because hashing is an
amortized constant-time operation, a range query
over n keys is expected to take O(n) time.

2.10 Parameter table
�e full range of tuning parameters is given in
Table 1.

2.11 Object Orientation
We designed sLSM to be fully general; for the sake
of academic experimentation, it makes sense to be
able to substitute key and value data types at will,
as well as to swap out run types. To this end, we
chose C++ as our language, primarily for its speed
and templating �exibility. With careful considera-
tions such as a Run interface that enforces proper-
ties of a memory bu�er run, we will in the future be

able to simplify complex testing that involves try-
ing di�erent combinations of runs (perhaps hash
tables or radix trees as well as skiplists).

3 EXPERIMENTATION
We tested the sLSM on a DigitalOcean Droplet
Server running 64-bit Ubuntu 4.4.0 with 32 Intel
Xeon E5-2650L v3 @ 1.80GHz CPUs, a 500 GB SSD,
224GB main memory, and 30MB L3 cache.
It was clear that the choice of parameters for the
sLSMwould play an important role in performance
optimization. Our �rst task was to �nd the com-
bination of parameters that resulted in excellent
baseline performance. �en, for various experi-
ments, we deviated from that set of parameters in
order to determine the e�ect of each parameter on
overall performance in the face of changing work-
load types. To �nd this baseline combination of
parameters, we tested on the Cartesian product
of the parameters in Table 1 and data size up to
100MB, essentially performing a �ne-mesh multidi-
mensional grid search. Of the 1,556 parameter sets
that we sampled, we chose the top 10% to move on
to the next round of larger data set testing. We then
tested each one of the remaining parameter sets
on 500MB, 1GB, and 10GB data sets, selecting the
parameter set with the highest average (weighted
by number of inserts/lookups) insert plus lookups
per second. �is baseline parameter set is the basis
for the rest of our experimentation: µ = 512, � =
0.001,R = 50,Rn = 800,D = 20,m = 1.0. Unless
otherwise speci�ed, all experiments use these pa-
rameters, as well as a 100 million key dataset with
32-bit integer keys generated uniformly at random.

3.1 Number of Runs in Memory
In determining the optimal R, we found that the
smaller R is, the smaller the memory bu�er is, and
the more frequent merges will be. �us, lower R
leads to lower insertion throughput. However, with
few runs to search, lookups are very quick with
small R. Analogously, higher R is linked to faster
insertion but slower lookup, since more runs need
to be searched. With Bloom �lters, it is possible to

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

The Skiplist-Based LSM Tree • 1:7

set R high enough to achieve extremely fast inser-
tion while enjoying signi�cant speedup on lookups
due to the �lters. More formally, R does not enter
the amortized insertion time function, and there
are signi�cant constant factors hidden in that equa-
tion that correspond to the speed and frequency of
merges. However, lookups depend linearly upon
R, as proven above.

�e above graph details the tradeo� between inser-
tion time and lookup time for a number of values
of R. As such, se�ing the number of runs intelli-
gently also allows us to tune the performance of
the sLSM to the workload at hand- more runs for
more writes, and fewer for more lookups.

3.2 Bu�er Size
�e choice of bu�er size is tightly linked with
the experimental optimization of the number of
runs. However, instead of a simple size-in-bytes
parameter for the memory bu�er, we expose a two-
dimensional knob. We allow the user to choose
both the number of runs and the size of each run.
As shown above, the number of runs is crucial for
performance. However, another important factor
for speed is the size of each skiplist. As shown, Rn
is a main determinant of the insertion and lookup
speed within each run. For this experiment, we
take a Cartesian product over R ⇥ Rn. As expected,
insert and lookup throughputs are traded o� as R
increases. However, of interest here is the e�ect
of changing Rn. For each value of R, increasing Rn
increases insertion rate while decreasing lookup
throughput. �is is because a larger Rn allows for
fewer merges over the lifetime of the workload due

to the larger memory bu�er. However, this increase
in the size of each run increases the runtime of
each lookup, since skiplist queries are logarithmic
in their size. For this reason, we chose a value of
Rn between 500 and 1000, �nding that 800 worked
nicely for a variety of workloads.

3.3 Disk and Merge Parameters
We determined that ifm is set under 0.5, merges
would happen too frequently for sizeable datasets,
causing the OS to run out of �le descriptors. To
determine optimal values of D and m, we took
their Cartesian product for along the range of val-
ues that were le� a�er the original parameter tun-
ing. For our standard workload, there was not a
signi�cant trend other than that throughput for
lookups tended to decrease asD increased for small
m. �is is likely due to the fact that the OS had
too have many �les open, leading to page churn as
very small disk runs are searched in sequence. We
present our chart with these results, noting that
even if the experimental results are sorted by Dm,
the size ratio between levels, there is not a signi�-
cant trend. Further experimentation will involve
larger datasets given this Cartesian product, as well

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:8 • Aron Szanto

as the introduction of various types of workloads.

3.4 Bloom Filters
Here we describe the performance enhancements
a�orded by Bloom Filters. Testing on a workload of
a million inserts and lookups, we demonstrate the
following cases: no Bloom �lter; Bloom �lter with
� 2 {0.1; 0.01; 0.001; 0.0001; 0.00001; 0.000001}

�e �lter provides an impressive speedup, from
3,634 lookups/sec to over 340,000/sec, with no sig-
ni�cant di�erence in insertion time. �e intuition
behind the speedup is simple: for each run, we
avoid a lookup inside it if we fail a Bloom �lter
test. Since such a test is far cheaper than a skiplist
lookup, we save ourselves the time of doing the
deep search by ruling out the possibility that a key
exists in a particular run.

Under pro�ling, we found that 98.9% of the CPU

(clock) time is spent in the skiplist lookup func-
tion without Bloom �lters. �is drops to a mere
13.1% when the �lters are introduced. In that case,
53.2% of the CPU time is spent calculating the hash
functions necessary for the �lter. Perhaps there
is an opportunity for further optimization here;
�nding quicker hash functions or making the �lter
structure more cache-conscious could ostensibly
provide signi�cant speedup, since the �lters are
such ”hot” structures. A more in-depth optimiza-
tion might take the form of recent work by Dayan
et al. in which the false positive rates of the Bloom
�lters are dynamically optimized across di�erent
levels of the structure[1].

3.5 Range�eries
We present a short demonstration of the sLSM’s
range query performance. As derived in Section
2, range queries are linear time operations in the
size of the range. For several di�erent range sizes,
we plot the time to complete range queries over a
uniform distribution of keys.

3.6 Data Size
We now show results for varying dataset sizes. As
is evident, insertions into and lookups experience
slowdowns as the data size gets larger.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

The Skiplist-Based LSM Tree • 1:9

�e reason for this e�ect with respect to inserts is
that as the system gets larger, it completes more
merges, which require expensive disk accesses. Lookups
too require querying more Bloom �lters and disk
runs as the data grow large, meaning that each
lookup requires more time. Nevertheless, our sys-
tem exhibits no more than a logarithmic slowdown,
which is as good as it can be given the theoretical
results shown above.

3.7 Update-Lookup Ratio
For many data systems, performance is dependent
upon the ratio of updates to lookups in the work-
load. In this experiment, we manipulated this ratio
between 10% lookups and 90% lookups for a 100mil-
lion query workload. To demonstrate the ability of
sLSM to adapt to various workloads, we show plots
of completion times of the query set for two sLSM:
one parameterized by R = 20 and one by R = 200.
As shown above, higher R leads to increased insert
throughput at the cost of lookup speed. As such,
the graph displays that the tree with balanced pa-
rameters (R = 20) is quite forgiving with respect
to the lookup ratio. In contrast, the specialized
tree (R = 200) completes the low-lookup, high-
insert workloads an order of magnitude quicker
than its balanced counterpart, at the cost of steeply
decreasing performance as lookups become more
prevalent in the workloads.

3.8 Data Skew
3.8.1 Insertion Skew. �e skewness of inserted

data is a vitally important factor of performance.
Our skiplists do not blindly insert elements; rather,
if a key is already in the active skiplist, its value
is simply updated. �is means that for data with
low variance of keys, insertion can be incredibly
fast. For this experiment, we generate integral keys
via a normal distribution (rounding to the nearest
integer) around zero and manipulate the variance.
As the variance increases, there is greater variety
of keys, and the insert performance drops precipi-
tously, as shown in the following log-log plot.

3.8.2 Lookup Skew: Single Threaded. Lookup
skew is similar: in the same style of experiment,
we �nd that for a set of uniformly distributed keys
in the sLSM, querying for a tightly clustered set
of lookup keys results in higher performance. �e

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:10 • Aron Szanto

performance degrades as the lookup keys get more
dispersed. A small set of lookup keys requires
fewer random seeks and disk page loads, result-
ing in be�er performance, as shown. Further work
will involve testing on hard disk drives and on sys-
tems that allow for �ne-grained tracking of disk
IOPS.

3.9 Concurrency
3.9.1 Lookup Skew: Multithreaded. Lookup skew

also provides an opportunity to utilize concurrency
in our experimentation. In this experiment, lookup
skew was varied along with the number of threads
performing concurrent lookups, demonstrating that
with highly clustered lookups, the sLSM’s scaling
factor is higher with each thread than with evenly-
distributed lookups. �is is due to the fact that
the disk is able to optimize its seeking to service
the lookup requests be�er when there is a small
locality of keys. Perhaps multiple threads could
even be serviced by the same disk pages, cu�ing
down on disk operations even further. �e close-
ness of the keys allows the access pa�ern to act like
sequential requests rather than random requests.
�e graphic also highlights the way that the sLSM
scales with the number of threads in the general
(key-dispersed) case. With a correlation coe�cient
of R2 = 0.98 and an increase in lookup throughput
of 1.02M per thread, sLSM proves its worth as a
parallel data structure as well.

3.9.2 Merge Threading. One of the concurrency
optimizations we implemented was the dedication
of a hardware thread for merging disk levels to
allow for lower latency. For this test, we measured
the largest time between insertions over 100M keys.
We used our server’s SSD as well as a Toshiba Can-
vio HDTB205XK3AA 500GB external hard drive
connected via USB3.0. With this setup, we were
able to measure the reduction in tail latency af-
forded by merge threading for both spinning and
solid-state disks.

As shown, there is a signi�cant reduction in maxi-
mal response time for both SSD and HDD. In fur-
ther testing, we also showed that merge threading
allowed the system to experience no less than 99.7%
CPU utilization throughout the workload, while
utilization dropped to 53% at times without merge
threading due to the processor waiting for the disk
operations to �nish.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

The Skiplist-Based LSM Tree • 1:11

4 CONCLUSION
We presented the Skiplist-Based Log Structured
Merge Tree, a data system that makes heavy use
of probabilistic data structures to provide highly
performant transactional queries. Our novel ap-
proach includes the development of a sequence of
cache-aware skiplists, indexing via Bloom �lters
and fence pointers, a fast k-waymerging algorithm,
lookup and merging concurrency, and a thorough
experimental evaluation that details the tradeo�s
between update and lookup throughput for a wide
variety of workloads.
We also showed theoretical guarantees as to the per-
formance of the system at scale and corroborated
them empirically, demonstrating that the system’s
performance is tightly bounded by the theoretical
guarantee. Further, we demonstrated that the sLSM
is adaptable to various workloads, readily able to
perform well for query sets of di�erent types of
skew. In single threaded work and with the right
tuning, the sLSM can exceed millions of queries
per second for both updates and reads, far outpac-
ing baseline results for such systems. Concurrent
lookups scale nearly perfectly as well, allowing the
sLSM to achieve throughput of between 7 and 11
million lookups per second on various datasets.
While there is still testing and implementationwork
to be done, the sLSM has proven its worth as a sub-
ject of research and as a high-performance big data
system.

REFERENCES
[1] Niv Dayan, Manos Athanassoulis, and Stratos Idreos.

2017. Monkey: Optimal Navigable Key-Value Store. In
ACM SIGMOD International Conference on Management
of Data.

[2] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and
Elizabeth O’Neil. 1996. �e Log-Structured Merge-Tree
(LSM-Tree). (1996).

[3] William Pugh. 1990. Skip lists: a probabilistic alternative
to balanced trees. Commun. ACM 33, 6 (1990), 668–676.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

	Abstract
	1 Introduction
	2 sLSM Design
	2.1 Memory Buffer
	2.2 Skiplists
	2.3 Memory Buffer Indexing
	2.4 Disk-Backed Storage
	2.5 Merging
	2.6 Insertion
	2.7 Lookup
	2.8 Delete
	2.9 Range
	2.10 Parameter table
	2.11 Object Orientation

	3 Experimentation
	3.1 Number of Runs in Memory
	3.2 Buffer Size
	3.3 Disk and Merge Parameters
	3.4 Bloom Filters
	3.5 Range Queries
	3.6 Data Size
	3.7 Update-Lookup Ratio
	3.8 Data Skew
	3.9 Concurrency

	4 Conclusion
	References

