
ProtoN: A Fast Binary Protocol for JSON-like Data
Transfer

ARON SZANTO, Harvard University

NICHOLAS BOUCHER, Harvard University

1 INTRODUCTION

JSON has emerged as one of the leading data transfer formats used on the Internet today.
It is a ubiquitous protocol for communication in web applications and is the lingua
franca for public-facing APIs across the web1. Indeed, programs as important as Google
and Facebook’s user-facing web applications depend on JSON to move data between
application databases and client browsers.
�ough standard, the JSON data format is heavyweight and slow, making it poorly

suited for growing data loads and for modern applications that shi� computation to the
client side. Due to its encoding of each datum (integer or �oating point digit, string
character, etc.) as an at least 1 byte long Unicode character, it is a naive way to transfer
data. A protocol that examines the data before encoding it to determine the optimal format
would be smaller and thus faster across the wire.
One solution to this was introduced by Google as the Protocol Bu�ers2 service. Protocol

Bu�ers are a framework for binary data interchange. �ey require prespecifying the
structure of a message before it is sent and generating code to compile each message into
a lightweight format by consulting the type �eld in the speci�cation for each datum in
1Over 50% of the APIs listed on h�ps://www.programmableweb.com/apis/, themost comprehensive directory
of its kind, use JSON.
2h�ps://developers.google.com/protocol-bu�ers/

2016. Manuscript submi�ed to ACM

Manuscript submi�ed to ACM 1

2 Aron Szanto and Nicholas Boucher

the message. As desired, this is much more e�cient than JSON, but this reduction in size
comes at the cost of �exibility: any message that is sent has to have a type schematic
that is prede�ned. Unfortunately, these schematics are bri�le and developers are prone to
make mistakes in them, potentially resulting in loss of forward- or backward-compatibility.
�ough e�cient, Protocol Bu�ers thus leave to be desired a binary encoding scheme that
is both �exible and small.
In this work, we introduce Protocol: Nimble (ProtoN), a lightweight, adaptive, and fast

binary format as a drop-in replacement for JSON, demonstrating both analytically and
experimentally that it requires less space to encode the same information as any JSON
object. We �nd that ProtoN is on average 31% smaller than standard JSON in a wide
variety of both hand-cra�ed and automatically-generated test cases. �is bodes well for
the supplanting of JSON with a binary format that maintains the functionality of JSON
but encodes data much less wastefully.
�e remainder of the paper will proceed as follows: Section 2 details the JSON and

ProtoN data formats and de�nes the speci�c binary encoding inherent to ProtoN. Section
3 compares JSON and ProtoN analytically, showing that under virtually all use-cases
ProtoN is provably smaller than JSON. Section 4 describes implementation details and
introduces the experimentation suite and the results from both random and handcra�ed
testing. Section 5 discusses the implications of this project and concludes.

2 DATA FORMATS

2.1 JSON

�e principal design goal of ProtoN is to encode JSON-like data in a small binary format.
To this end, we begin with an overview of the JSON data format.
JSON3 is built on two structures: the object and the list. Objects are a collection of name-

value pairs, while lists are ordered arrays of values. Values are strings, numbers, booleans,
or nulls, each with speci�c allowed forma�ing. JSON is �exible and recursive, able to
encode a large variety of data. Under the hood, however, JSON falters by representing
each bit of data in its string format. �is means that the value 1 requires one byte, while
the string value �1� requires three and the value null requires four. Figure 1 de�nes the
formal JSON semantics; this is the data format the ProtoN’s protocol supports as well. As
3as speci�ed in h�p://www.ecma-international.org/publications/�les/ECMA-ST/ECMA-404.pdf
Manuscript submi�ed to ACM

ProtoN: A Fast Binary Protocol for JSON-like Data Transfer 3

such, ProtoN is complete: any data that could be represented by JSON may be encoded in
ProtoN as well.
JSON’s disadvantage is that every bracket, quote, colon, comma, and other supporting

character associated with the format is vital to its encoding. Because whitespace is ignored
by JSON, there is no way to do away with these extraneous characters without introducing
ambiguity into the data. ProtoN seeks to do be�er.

2.2 ProtoN

ProtoN de�nes an abstract binary protocol whose encoding space is a superset of the
JSON data space. �e insight of ProtoN is that it operates at the bit level, inferring the
smallest possible number of bits it needs to encode each segment of data unambiguously.
�ere are three layers of ProtoN entities: binary encodings, primitives, and containers.

2.2.1 Binary Encodings. �e smallest unit in ProtoN is a binary encoding, a bit-level
speci�cation of data. binary encodings include 3-bit typecodes (denoting the type of data
that follows), raw numeric or character data, such as 32-bit integers or unicode strings,
and other metadata. One key feature of ProtoN binary encodings is that there may be
several �avors of encodings for each abstract datatype. For example, the protocol supports
8-, 16-, 32-, and 64-bit signed integers. �is allows the encoder to select the smallest
bitwise (rather than bytewise) encoding that captures the data. Figure 2 de�nes the seven
binary encodings resident in the ProtoN speci�cation. Note that the len encoding �exibly
encodes an unsigned integer by selecting the smallest representation possible. �e len is
fundamental to building complex data types such as strings and lists.

2.2.2 Primitives. �e middle unit is composed of a collection of primitive datatypes:
Null, String, Integer, Float, and Boolean. �ese are the fundamental types for all data
transfer (and indeed are those primitives speci�ed by JSON). It is at this layer that ProtoN’s
e�ciency becomes obvious. All primitives begin with a 3-bit typecode.
To encode a primitive integer, the ProtoN encoder determines the smallest number

of bits (choosing between 8, 16, 32, and 64) that the data can be represented by. It then
encodes its selection as a two bit number sz. �e full integer encoding is then the three
bit typecode for an integer followed by the two bit sz value followed by a 2(sz+3)-bit
representation of the number.

Manuscript submi�ed to ACM

4 Aron Szanto and Nicholas Boucher

object

{}

{members}

members

pair

pair,members

pair

string:value

array

[]

[elements]

elements

value

value,elements

value

string

number

object

array

true

false

null

string

��

�chars�

chars

char

char,chars

char

any Unicode character except:

� or \ or control character

\�

\\

\/

\b

\f

\n

\r

\t

\u four-hex-digits

number

int

int frac

int exp

int frac exp

int

digit

digit digits

-digit

-digit digits

frac

.digits

exp

e digits

digits

digit

digit digits

e

e

e+

e-

E

E+

E-

Fig. 1. Abstract JSON semantics

Manuscript submi�ed to ACM

ProtoN: A Fast Binary Protocol for JSON-like Data Transfer 5

Numerical Representation

- **0b...** denotes binary digit *(1 bit)*

- **0q...** denotes quaternary digit *(2 bits)*

- **0o...** denotes octal digit *(3 bits)*

Byte Order

Network Byte Order (Big-Endian)

Encodings

- int*n*: *n*-bit signed integer

- uint*n*: *n*-bit unsigned integer

- float64: IEEE 754 64-bit signed floating point number

- bool: 1-bit encoding of boolean values {0b0: �False�; 0b1: �True�}

- len: <uint2, uint8|uint16|uint32|uint64>

- String: <len, UTF-8 encoded string>

- ShortStr: <uint3, UTF-8 encoded string>

Typecodes:

Primitives (Prim)

- **PrimNull**: *0o0*

- **PrimString**: *0o1* <String\>

- **PrimInt**: *0o2* <uint2, int8|int16|int32|int64\>

- **PrimFloat**: *0o3* <bool, ShortStr|float64\>

- **PrimBool**: *0o4* <bool\>

Pairs (Pair)

- **ConPair**: *0o5* <String, Prim|Con>

Containers (Con)

- **ConList**: *0o6* <len, {Prim|Con}*>

- **ConObject**: *0o7* <len, {Key}*>

Fig. 2. ProtoN Binary Format

Manuscript submi�ed to ACM

6 Aron Szanto and Nicholas Boucher

Strings are encoded as a len type followed by a UTF-8 encoding of the string.
Floats are encoded either as a 64-bit IEEE 754 �oating-point number or as a string,

depending on which is smaller (i.e., the decision is made depending on whether the string
representation of the number is smaller than 8 characters long). Because JSON �oats are
interpreted as 64-bit �oats, this maintains full precision.

2.2.3 Containers. �e largest unit of encoding in ProtoN is a message, akin to a JSON
object. At its top level, a message is a container – a list or an object, de�ned as in JSON. A
message is speci�ed by the protocol version number followed by exactly one container.
A list is encoded as a list typecode, then a len type, then an arbitrary number of

primitives or containers.
A ProtoN object is a collection of Pair types, which (like their JSON counterparts), are

tuples of String keys and arbitrary values. Like lists, objects are headed by their lengths.

3 COMPARISON

To demonstrate that ProtoN encodings are smaller than JSON, we consider every data
type that JSON supports.
Integers in JSON are encoded as digitwise unicode strings. �erefore, a JSON integer

x has (in the best case, where the x is positive and thus does not require a minus sign)
8 ⇤ (blog10 xc + 1 + 1) bits, where second 1 corresponds to the colon, comma, or brace
preceding the integer, depending on whether it is part of an object or (at the front of a)
list. ProtoN requires 3 bits for the integer typecode and 2 bits to encode the size of the
integer. We handle the four sizes separately:

(1) �e smallest (by space) decimal number that an 8-bit signed integer encodes is
0, which requires two bytes (counting the leading character) in JSON, or 16 bits.
ProtoN requires the 5 bits of overhead plus 8 bits for the integer, or 13 bits total.

(2) �e smallest decimal number that a 16-bit signed integer encodes (that an 8-
bit integer cannot) is 27 = 64, which requires three bytes (counting the leading
character) in JSON, or 24 bits. ProtoN requires the 5 bits of overhead plus 16 bits
for the integer, or 21 bits total.

(3) �e smallest decimal number that a 32-bit signed integer encodes (that a 16-bit
integer cannot) is 215 = 32768, which requires six bytes (counting the leading

Manuscript submi�ed to ACM

ProtoN: A Fast Binary Protocol for JSON-like Data Transfer 7

character) in JSON, or 48 bits. ProtoN requires the 5 bits of overhead plus 32 bits
for the integer, or 37 bits total.

(4) �e smallest decimal number that a 64-bit signed integer encodes (that a 32-bit
integer cannot) is 231 = 2147483648, which requires eleven bytes (counting the
leading character) in JSON, or 88 bits. ProtoN requires the 5 bits of overhead plus
64 bits for the integer, or 69 bits total.

�erefore, every integer value up to the max value of a 64-bit signed integer is encoded
smaller in ProtoN than in JSON. (For integers larger than 64-bits, the user should represent
the integer as a string).
Floats in ProtoN are encoded either as strings or as 64-bit �oating point numbers. In

JSON, �oats are encoded characterwise. ProtoN chooses the optimal encoding– if the
string representation of the value is smaller than 8 characters, then ProtoN encodes it
identically to JSON. Otherwise, it is encoded as a 64-bit �oating point value, which will
be smaller than the JSON string representation (but maintains precision since even string-
�oats are interpreted as 64-bit �oating point values on the receiving side). Considering
the leading character as above (along with the decimal point), �oats are strictly smaller in
ProtoN than in JSON.
Null values are encoded simply as the 3-bit typecode in ProtoN, but require four bytes

to spell the word null in JSON.
Booleans are encoded as the 3-bit typecode followed by a 1-bit true or false �ag. JSON

requires the full word true or false (4 or 5 bytes, respectively).
Strings of length n in JSON require n + 3 bytes because of the leading character and

the requirement that they be bookended by double quotes. In ProtoN, strings of length
n are encoded as a len type followed by the string. JSON is smaller than ProtoN if and
only if n > 216 � 1 = 65525 because the three bytes of overhead would be dominated by
ProtoN’s 2-bit + 32-bit overhead. However, we posit that the use cases in which JSON is
employed to transmit many strings of length greater than 65525 are quite sparse. �is is
the only counterexample to the otherwise strict size di�erence between ProtoN and JSON.
By rede�ning len to encode 32-bit lengths, we can push the boundary even further, to
over 4 million. As such, ProtoN’s string encoding remains smaller than JSON’s in virtually
all cases.

Manuscript submi�ed to ACM

8 Aron Szanto and Nicholas Boucher

Lists of size n require n � 1 commas and 1 closing bracket for a total of n bytes of
overhead in JSON. In Proton they require 3 bits for a typecode and a len encoding, which
will be smaller than n bytes by de�nition.
Objects of size n require n � 1 commas, n colons, and 2 braces for a total of 2n + 1 bytes

of overhead in JSON. In Proton they require 3 bits for a typecode and a len encoding,
which will be smaller than n bytes by de�nition.
Because of the bitwise encoding inherent to ProtoN, its data format is much smaller

than JSON’s in nearly all cases.

4 IMPLEMENTATION AND EXPERIMENTS

Our proof of concept fully implements the ProtoN binary format in both Python and
JavaScript. �ese two languages represent two of the most prominent frameworks used
for server programming and handle a large portion of worldwide JSON tra�c. We
implement a unit testing suite and an experimental e�ciency testing suite, both composed
of handcra�ed test cases as well as automatically generated large and small JSON �les to
measure correctness and size di�erential.

4.1 ProtoN Implementation

We implemented the ProtoN binary format in both Python and JavaScript. �is choice of
languages both allows us to empirically test the theoretical implementation of ProtoN
and also provides a working implementation that can be used in Python and Node.js
webservers together with JavaScript browser clients.
�e primary di�culty in implementing ProtoN came from the fact that most program-

ming languages, including Python and JavaScript, prefer to think of bytes as the smallest
unit of data. �is means that, in addition to implementing a type-inferring encoder and
a corresponding decoder, a plethora of bitwise operations were required to achieve the
correct results (which were at the level of bits).
�e implementation of and encoder and decoder in both Python and JavaScript lent

itself nicely to recursive functions. �e encoders, for example, both recursively traverse
the object being encoded and recursively write every subcomponent individually. Both
language versions of the encoder and decoder implement the same binary format protocol
speci�cation, just in di�erent languages.
Manuscript submi�ed to ACM

ProtoN: A Fast Binary Protocol for JSON-like Data Transfer 9

�e Python implementation requires Python 3.5+ and the JavaScript implementation
requires ECMA6, meaning that the code will execute on any modern Python3 installation
and any modern browser independent of platform.
Opportunities for future work include implementing the ProtoN speci�cation in addi-

tional languages.

4.2 Benchmarking & Testing

We begin by generating a large set of JSON �les which we use for both unit testing and
space-e�ciency benchmarking. �ese JSON �les are of a randomly chosen length (up
to some customizable, reasonable maximum) and contain random valid JSON data (i.e.
random strings, integers, �oats, booleans, null values, lists, and objects). In addition
to these randomly generated �les, we also gathered unit tests from open source JSON
implementations4.
�ese JSON �les are then used as unit tests to check the equality of the decoded ProtoN

encodings with the parsed JSON. We also test equality of implementation between the
Python and JavaScript implementations using Node.js to run the JavaScript outside of a
browser.
More interestingly, however, these JSON �les are also used to benchmark the space-

e�ciency performance of ProtoN against JSON. For each JSON �le, we compare the size
of the resulting ProtoN binary encoding to the size of the equivalent UTF-8 encoded,
whitespace-mini�ed JSON representation. When running this benchmarking utility over
100 randomly generated JSON �les and 58 example JSON �les taken from open source
JSON implementations, we see that ProtoN is 30.8% smaller than JSON, on average. �at
is, across all of the test �les, ProtoN used 30.8% fewer bytes to encode all �les.
We make this benchmarking utility available with the ProtoN source code, together

with a random JSON generation utility, for any further desired testing.
We were further interested in how ProtoN benchmarked against JSON for speci�c

primitive types. �at is, we wondered what di�erences were found in the benchmarks
when we restricted the test cases to a speci�c data type, such as �oats. �e results are
shown in Figure 3.

4Tests were discovered within h�ps://json.org/JSON˙checker/ and h�ps://github.com/Julian/jsonschema
Manuscript submi�ed to ACM

10 Aron Szanto and Nicholas Boucher

List(Null) ProtoN/JSON Size: 0.07558488302339532

Object(Null) ProtoN/JSON Size: 0.5644471594379963

List(String) ProtoN/JSON Size: 0.9498099137300775

Object(String) ProtoN/JSON Size: 0.9251850370074015

List(Int) ProtoN/JSON Size: 0.506427187885191

Object(Int) ProtoN/JSON Size: 0.6220235676554247

List(Float) ProtoN/JSON Size: 0.4552658349842052

Object(Float) ProtoN/JSON Size: 0.578967837280753

List(Bool) ProtoN/JSON Size: 0.09142130134496547

Object(Bool) ProtoN/JSON Size: 0.5526296432511953

List(List) ProtoN/JSON Size: 0.542485838053982

Object(List) ProtoN/JSON Size: 0.7659479686386315

List(Object) ProtoN/JSON Size: 0.542485838053982

Object(Object) ProtoN/JSON Size: 0.7664901732029077

List(Smallfloat) ProtoN/JSON Size: 0.9499133949191686

Object(Smallfloat) ProtoN/JSON Size: 0.8886060687252998

Fig. 3. Typed ProtoN/JSON Benchmarks

For each primitive, we constructed two tests: one which encoded 1,000 random values
of that primitive in a list and one with 1,000 random values of that primitive paired
with random string keys in an object. �e results followed nicely from the theoretical
results outlined previously. We found that the least e�cient encoding (relative to JSON)
were values which are encoded as strings (that is, Strings themselves and ”small” �oating
point numbers which we represent as strings). �ese ProtoN values consumed 92-95% as
much space in their JSON equivalents. We further found that the most e�cient encoding
(relative to JSON) were lists f nulls and boolean values, which consumed only 7-9% as
much space against their JSON equivalents.
Our experimental results thus validate our theoretical basis that ProtoN is smaller than

JSON in nearly every case. �e results also allowed us to �nd an experimental average of
30.8% more e�cient and �nd the optimal encoding types to be null and boolean values.
Manuscript submi�ed to ACM

ProtoN: A Fast Binary Protocol for JSON-like Data Transfer 11

5 DISCUSSION AND CONCLUSION

In this work we have presented ProtoN, a new binary protocol for JSON-like data encoding.
Unlike widely-used binary protocols such as Protocol Bu�ers, ProtoN does not require
the prespeci�cation of type and structural information, instead inferring it adaptively and
on the �y. We demonstrated mathematically that in nearly all cases it is provably smaller
than JSON, and in a comprehensive sequence of tests showed that it is 31% smaller than
JSON on average.
One fascinating area of future work is message structure inference. One could imagine

a protocol in which a message code is passed from sender A to receiver B along with the
typecodes in the message (e.g., list of length 10 of int, �oat, etc.), as ProtoN currently
does. �en on subsequent messages with that same message code the typecodes could be
omi�ed and instead inferred by consulting a mapping from message code to typecode set
by the receiver. �is would even further reduce the overhead of a binary protocol, though
would restrict subsequent messages to the same basic types.
JSON is one of those technologies whose ubiquity is matched only by its ine�ciency. It

is our hope that further work along these lines will result in a widely-adopted successor
to JSON that is lighter and faster.

�e source code for ProtoN is published at h�ps://github.com/nickboucher/ProtoN.

Manuscript submi�ed to ACM

