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Abstract

Members of loosely-coupled teams are often unaware of the work done by other team members. As
such, identifying and sharing relevant information with a user about their teammates’ activity can enhance
collaborative success. Determining the relevance of information becomes more difficult as teams grow
large and users dispersed. In this work, we introduce a model to predict information relevance in large-
scale collaboration that addresses these difficulties. Our model also captures a one-to-many relationship
between users and projects and allows for multiple types of user interaction. Using data from the GitHub
Archive, we demonstrate that our approach can predict both user-repository interaction sequences and the
likelihood of success for a given repository. Specifically, we show that our model predicts all types of user
interactions at 65% precision and active user interactions at above 80%. It also predicts a repository’s stars
and forks, two important metrics of success, within 5.7 of the true value. These findings bode well for the
creation of large-scale information sharing systems that facilitate successful teamwork at scale.

1. Introduction

Teamwork in loosely-coupled teams reduces task
complexity for individuals and can lead to more ef-
ficient teamwork (Hutchins, 1995). To achieve this
efficiency, a team requires an appropriate division
of labor, information overlap between team mem-
bers, and mutual knowledge of the shared goals, all
of which depend on team members’ being aware
of others’ work (Pinelle and Gutwin, 2005). Sys-
tems that aim to support such teamwork can lever-
age the history of the members’ previous interac-
tions with each other and with the project in order to
determine the most helpful information to commu-
nicate (Olson and Olson, 2000). Large-scale col-
laborative platforms (LCPs) such as Wikipedia and
GitHub are composed of multiple loosely-coupled
teams and include users that can be members of
multiple teams. This poses the challenge of how
to extend current models of information sharing in
loosely-coupled teamwork to incorporate the inter-
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project relationships of users and projects.
Recent work focuses on models that infer the

relevance of different objects to a particular team
member (Amir et al., 2016; Bălău and Utz, 2016;
Xiao et al., 2016). In the LCP setting, an analogous
goal is to infer which team has relevance for a given
user. Users on LCPs can take on different roles in
each project, influencing the way they interact with
each one. In particular, users may contribute con-
tent, shape the design of a project, or passively con-
sume its content.

Consider a user Alice who most actively con-
tributes to a team Foo. A successful information
sharing system would summarize recent changes
about Foo for Alice, but be unlikely to recommend
Foo as a team to watch. On the other hand, a
user Bob, who collaborates with Alice on other
projects, might benefit from a recommendation to
watch Foo. Therefore, a system that intelligently
shares information with users should not only take
into account the teams relevant to a particular user,
but also have knowledge of the types of interaction
a user is likely to have with the project.

We formalize this problem as an extension
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Figure 1: An illustration of the TILLT domain. Users can have
different interactions with different projects. The problem is to
identify relevant projects for each interaction type

of the ISLET problem by Amir et al. (2016),
which we call the TILLT problem: Type-specific
Information Sharing in Loosely-coupled Large-
scale Teamwork. The problem domain is illustrated
in Figure 1. We identify two challenges within
the TILLT domain that we address in this paper.
The first is how to model the future behavior of
an individual user based on past behavior, consid-
ering the types of interactions and teams the user
was involved in. The second challenge is to deter-
mine how to use this individual behavior model in
a global model that uses knowledge about all teams
to identify information to share with a user.

To address the first challenge, we propose
two techniques based on Hidden Markov Models
(HMMs) and on Long-Short Term Memory Neu-
ral Network (LSTM)-based autoencoders to learn
a condensed representation of sequential user in-
teractions. For the second challenge, we present a
graph-based representation of interactions between
users and teams, teams and other teams, and users
and other users. We use the encoded user interac-
tions as well as information about the interaction
graph to build a discriminative model to predict
both a user’s likely future interactions with other
users and teams. Our models are able to discern a
real future interaction from 500 other possible in-
teractions over 65% of the time with increases in

performance to over 80% when only predicting ac-
tive interactions. In a second analysis, we show that
we can predict whether teams are within the top half
for project success for over 85% of the repositories
based on solely the representation of their sequen-
tial interactions.

In Section 2, we formalize the TILLT problem.
In Section 3, we discuss the interaction graph repre-
sentation of the problem and different measures we
can extract from the graph. We define metrics for
user-team interactions, general information about a
team, and introduce user-representations. We then
describe experiments in Section 4, our data in Sec-
tion 5, and discuss the results in Section 6. Finally,
we contrast our approach with related work in Sec-
tion 7.

2. Large Scale Collaboration

Highly distributed collaborative platforms such
as GitHub comprise many repositories that rep-
resent individual teams. Following the definition
for the ISLET problem, we begin to formalize the
TILLT problem with a set of Users U and a set of
teams R. A study by Tausczik et al. (2014) showed
that on LCPs, most interactions can be classified
into a small set of interaction types. Following this
finding, we classify user interactions into three dis-
tinct types. A user can contribute to any of the
teams by actively adding content, by discussing the
design, and by passively consuming the content.
As such, we consider the set of contribution types
A = {ADD,DES,PAS}.

Inter-user collaboration on LCPs often happens
asynchronously. For example, consider two users
Alice and Bob who both work on a project Foo.
When Alice makes a change, Bob sees it and con-
tributes to Foo accordingly, yet hours or days might
have passed, and Alice may have moved on to dif-
ferent contributions in that time. To account for
this asynchronicity, we define a set of time frames
T , each of length ∆. Actions by different users
that happen within the same frame t ∈ T are
considered to fall into the same interaction ses-
sion. A single session s is thus defined as a tuple
(t, (〈u1, r1, a1〉, . . . , 〈u|s|, r|s|, a|s|〉)), where 〈ui, ri, ai〉

describes an action ai ∈ A taken by user ui ∈ U
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working with team ri ∈ R. The set of all interaction
sessions is called S.

We consider two problems within the TILLT
framework: identifying information to share, and
identifying successful teamwork. The goal of the
ISLET problem is to determine which objects are
relevant to each user within a team. Correspond-
ingly, in the TILLT domain the equivalent goal is
to determine which teams are relevant to each user.
Since TILLT distinguishes between three contribu-
tion types, the goal is further specified as predict-
ing the teams and corresponding contribution types
that are relevant to a user. To illustrate this goal,
we consider the user Carl, whose behavior within
his teams spans the three categories of interaction.
He is a contributor to team Gro and actively devel-
ops and pushes code. He is also the project lead for
team Hao, and shapes its design by commenting on
and opening issues. Finally, he passively watches
team Iot so that he is up to date with its develop-
ment. Given this variety of interactions and teams,
he requires nuanced information such as “which
other projects should I follow?”, “Were there recent
changes in Hao?”, and “Are there other projects that
would benefit from my contributions?”. The first
TILLT problem is therefore to determine a set of
relevant teams and interaction types about which to
inform the user. More formally, the problem is to
devise a model that predicts an interaction session
st given the information from all previous sessions
s1:t−1. The predicted session would form the basis
upon which an information sharing system might
inform the user of relevant information.

In the second problem, we aim to use the his-
tory of interactions that users had with a project to
characterize its likelihood of success in the future.
Formally, we utilize the sequence of sessions sr

1:t−1
for a given project r to predict some success met-
ric mr

t of the project in time t. Characterizing suc-
cess based on user interactions enables recommen-
dations as to whether a project requires more inter-
actions of a particular type a to increase its chances
of success. Combining the results from both prob-
lems can yield a powerful system that can guide
projects on a global level as well as provide help-
ful information to individuals.

3. Graph-based Representation of Teamwork

Amir et al. (2016) propose mutual influence po-
tential networks (MIP-nets) to address the ISLET
problem. A MIP-net is a graph structure that con-
sists of nodes for users and for objects, as well as
edges between users and objects and objects and
other objects. This formulation assumes that every
user in the problem is a member of the same team.
In the TILLT problem, this assumption is not valid,
since users can work on completely disconnected
teams. Moreover, previous work by Tymchuk et al.
(2014) shows that on LCPs, people often do not
know others even in their immediate neighborhood
within a collaboration graph. Therefore, we intro-
duce edges between users to measure how tightly
coupled the contributors within the globally span-
ning team are. We additionally define the graph
to be a multi-graph and represent each contribution
type as a separate edge between a user and a team.
Formally, we define the following elements of the
graph:

• NU : a set of nodes representing users.

• NR: a set of nodes representing teams.

• E: a set of edges of one of three types: (1)
〈nu, nr, a〉, connecting a user u with a team r
for a specific action type a, (2) 〈nr1, nr2〉, con-
necting a team r1 with another team r2, or (3)
〈nu1, nu2〉, connecting a user u1 with another
user u2.

For each user-team interaction 〈u, r, a〉 within a
session, the graph updates the weight of the edge
〈nu, nr, a〉 where nu is the node of the user, nr is the
node of the team, and a the interaction type. Addi-
tionally, the edge 〈nu, nv〉 is updated for each user v
that also interacted with r within the same session.
Finally, the edge 〈nr, nq〉 is updated for every other
repository q that the user interacted with during the
same session. We add a weight decay parameter γ
by which old edge weights are discounted before
each update. This process is repeated for every ses-
sion to construct the final graph. An example of
how weights of edges within the graph can be used
to infer information to share with users is shown in
Figure 2.
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Figure 2: An example multigraph with three users and three
teams. Users Alice (A) and Bob (B) both actively contribute
to project Foo (F) and therefore have a high weight between
them. Bob also watches project Gro (G). User Carl (C) is
an active contributor to Gro and therefore, he and Bob have a
weak weight between them. Due to Bobs interaction with both,
Foo and Gro have a small weight as well. An information shar-
ing algorithm can now recommend Gro to Alice as a potential
new project to watch, as well as show relevant changes within
Foo. Carl is also actively contributing to a second project Hao
(H), which might in turn be interesting to Bob. Due to the mul-
tiple active interactions between Carl and Hao, the information
sharing algorithm learns that Hao is more relevant to Carl than
Gro and thus prioritizes information about Hao for him.

We extract several measures from the teamwork
graph. Given a user u and a repository r, we com-
pute a vector of concatenated features x. Each indi-
vidual feature is denoted by an index i. Following
the approach of Amir et al. (2016), we compute the
degree of interest (DOI) (Furnas, 1986), which uses
team centrality and distance between the user and
team as measures. Our proposed multigraph repre-
sentation allows for additional computation of met-
rics for each user-team pair, individual team, and
individual user.

3.1. User-Team Measures

The first metric x1 is the distance D(nu, nr),
which is a component of the DOI as presented
by Amir et al. (2016). It is computed as the
Adamic/Adar proximity metric (2003) between
nodes nu and nr. To account for all interaction types
A, we compute an additional distance D(nu, nr, a)
for every a ∈ A that only takes into account edges
of type a.

To measure how connected a user u is to other
users within a team r, we define x2 as the connect-
edness

C(nu, nr) =
∑

(nu,nv) : v ∈ U

1(w(nv, nr) > 0) · w(nu, nv)

where w(nu, nv) denotes the edge weight between
nu and nv.

The last measure x3 is a binary value that indi-
cates whether u is owner of r. While not every
large-scale cooperative platform might have such a
relationship, this owner relationship, if it exists, is a
strong signal that a user will continue to contribute
to a particular team.

3.2. Team Measures

We define x4 to be the a priori importance (API)
of a node, which is the second part of the DOI com-
putation. We follow Amir et al. (2016) by using the
degree of a node as the API measure, computed as
the fraction of total nodes to which nr is connected.

We further compute two measures that together
make up x5, a metric for how tightly coupled a
team is. Within a loosely coupled team, members
are more likely to switch to other projects than in
tightly coupled teams. Therefore, we define the first
part of x5 as the fraction of users in a team that have
an edge of weight > 0 between them, and the sec-
ond is the average weight between users in a team.

Other possible measures about a team that are not
used in this general model, but that could easily be
added for our domain-specific problem, include de-
scriptive measures such as the number of stars or
forks that a repository on Github received.

3.3. Encoding User Behavior

A first approach to modeling user behavior is to
count the number of interactions of each type that
a user had in the past. We encode this information
as x6. However, this approach does not incorpo-
rate the sequential nature of interactions. If Alice
switches back and forth between the projects Foo
and Bar, while Bob stays at Foo, and then switches
to Bar, it is conceivable that their total interac-
tion counts would be the same, despite their true
relationships with the projects being significantly
different. Hence, we consider two approaches to
encode temporal information about user behavior
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to comprise measure x7, a Hidden Markov Model
(HMM), and an LSTM-based autoencoder.

3.3.1. Hidden Markov Model
Formally, a HMM is a 4-tuple, (S ,O, π,Ω),

where S is a set of states, O is a set of observa-
tions, π : S × S → [0, 1] is the probability of
transitioning from one state s to another s′, and
Ω : S × O → [0, 1] is the probability of emitting
observation o while in state s. As such, an HMM
models a generative process that emits sequences of
observations. We propose that each user transitions
between states that describe the unobserved char-
acteristics of their work, and that we observe emis-
sions generated from these states as the actions they
take. Specifically, we observe a sequence of ac-
tions taken by users over time. For each observed
action, we additionally note whether an emission
ot corresponded to the same project that the last
emission ot−1 did. This models both the types of
contributions a user makes to their various projects
as well as the user’s propensity to switch between
projects. Given sequences of observed states, the
HMM learns a distribution over the hidden state
sequences, in essence describing the most likely
workflow for each user. Using the observed emis-
sions, we use the Baum-Welch algorithm to learn
the parameters S ,O, π, and Ω. From there, we use
the Viterbi algorithm to estimate the most likely se-
quence of hidden states for each user. In this case,
x7 is defined as the fraction of steps that a user
spends in each state.

3.3.2. Autoencoder
Due to the Markovian assumption in an HMM,

the probability of an emission is independent of
a user’s history of actions. To generate a rep-
resentation of the whole sequence of events, we
propose using an autoencoder based on an LSTM
architecture (Hochreiter and Schmidhuber, 1997).
An LSTM is a recurrent neural network (RNN)
that learns to map a sequence of inputs of length
T , o1, . . . , oT , to a sequence of representations
h1, . . . ,hT by learning and recursively applying a
function RNN at each time step t ∈ 1 . . . T :

ht = RNN(ot,ht−1)

In an autoencoder, two RNNs are chained together,
the encoder and decoder. For each time step t, the
encoder computes ht. The final representation hT

contains an encoding of the whole sequence of ob-
servations.

The decoder uses the encoding hT from the en-
coder to initialize its h1. From there, it makes a
prediction ô1 that aims to restore the true o1, and
recursively uses ô1 as an input to compute h2 as
well as to predict ô2. This process repeats T times
to compute the sequence ô1 . . . ôT . In other words,
the encoded vector hT is a lossy compression of the
whole original sequence, which we use as our fea-
ture x7.

4. Experiments

4.1. Predicting Users’ Actions

Let X be a design matrix composed of the x-type
rows that describe the relationship between each
user u and each team r given the information in
s1:t−1 at a time t, as defined in Section 3. Let yall
be 1 if there is any interaction between u and r in
session st, and 0 otherwise. Analogously, for each
a ∈ A, let ya ∈ {0, 1} be 1 if and only if an interac-
tion of type a exists at time t.

We model this problem by learning a discrimina-
tive probabilistic model p(y|x; Θ), and learn the pa-
rameters Θ. Unlike in previous work (Amir et al.,
2016), it is not possible to hand-pick Θ, since the
number of features in x is so large. We utilize both
a linear and a nonlinear model to compute p(y|x),
namely a logistic regression and a neural network.

In total, we consider four different models: (1)
Logistic regression using the full feature set x, (2)
Neural network using x, (3) MIP-DOI by Amir
et al. (2016), which is equivalent to a logistic re-
gression using only x1 (Distance) for all interac-
tions and x4 (API), and (4) a neural network using
all measures except those in MIP-DOI. The reason
behind choosing (4) is to investigate whether it is
possible to predict interactions without a distance
metric between a user and a repository. This model
has to rely solely on indirect features between a nu

and the users of the repositories that nu is connected
to.
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Table 1: Description of different events on GitHub.

Name A Description

ReleaseEvent none Release is published.
PublicEvent DES Private repository is made public
PullRequestReviewCommentEvent DES Comment on the diff of a pull request
ForkEvent PAS Fork of a repository
GollumEvent DES Wiki page is created or updated
MemberEvent none User is added as collaborator
DeleteEvent ADD Deleted branch or tag
IssueCommentEvent DES Issue comment is created/edited/deleted
PushEvent ADD Push to a branch
PullRequestEvent ADD Pull request is opened/updated/closed
CommitCommentEvent DES Commit comment
WatchEvent PAS Someone starred a repository (not watch!)
IssuesEvent DES Issue is created/updated/closed
CreateEvent ADD New Branch or Repository

We train the models to predict each of
y{all,ADD,DES ,PAS } and measure the following suc-
cess metrics: (1) Average rank of the correct an-
swer in the set of predictions made by the model
(µRank), (2) precision of making one prediction, and
(3) recall when making 5, 10, and 20 predictions.

4.2. Predicting Successful Teamwork

In the GitHub domain, two obvious choices for
success metrics are the number of stars and the
number of forks that a repository has. Starring a
repository indicates interest in and usefulness of a
repository, while forking indicates an active desire
to contribute to and improve the repository. In this
model, we construct our feature sets similarly to
the user-project features, but instead of consider-
ing sequences of actions for each user-project pair,
we use the full sequence of actions related to each
repository. That is, we train our HMM and RNN
models on the sequences of actions taken with re-
spect to each repository regardless of which user
actually took the action.

Let x = x7 for either the HMM or RNN model
for the project-centric, user-agnostic training sets.
Let y f s be the sum of the number of forks and stars
for each repository. Further, let yb

f s be an indicator
variable for whether a repository’s combined num-
ber of stars and forks is in the top 50% of all val-

ues. We learn a discriminative model p(y|x; Θ) to
predict the above labels given only the output of
the HMM or RNN. This results in two modeling
tasks: predicting the number of forks and stars for
an new repository, and classifying a new repository
into the top or bottom halves of the range using a
particular x7. Due to the complex, noisy, and non-
linear nature of the dataset, we experiment with a
wide variety of predictive models. For both tasks,
we report results for the HMM and RNN encodings
and the three highest performing models we consid-
ered. For regression, these are (1) ridge regression,
(2) SVM regression, and (3) random forest regres-
sion, and for classification, these are (1) logistic re-
gression, (2) SVM classification, and (3) random
forest classification.

We additionally conduct the same experiment
while omitting actions from the input that corre-
spond to a repository receiving a star or a fork. This
prevents the models from learning to extrapolate fu-
ture success from the current number of forks and
stars that a repository has. The results are a direct
indication of whether certain sequences of interac-
tions are more likely to occur in successful reposi-
tories.
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5. Data

We use a dataset comprising all 10, 231, 246 pub-
lic events that occurred during January 2015 on
Github, downloaded from the GitHub Archive1.
The data are formatted as a list of events and corre-
sponding information such as a timestamp, a user,
and a repository. A list of all possible events, a short
description of each, as well as our assignment of
each to an interaction type a can be found in Ta-
ble 1.

Previous work found that most projects on
GitHub are not collaborative (Lima et al., 2014).
To capture only collaborative users and projects, we
exclude repositories with fewer than 3 contributors
or 40 interactions, as well as users who contributed
to fewer than 3 repositories or had fewer than 40
interactions. This limits the data to 1, 096, 459 in-
teractions between 16, 987 users and 10, 684 repos-
itories. The full interaction graph has 1, 320, 485
edges. The minimum number of stars and forks for
a repository is 0, and the maximum is 9, 459. We
set ∆ to 3 days, which results in a total of T = 10
sessions.

5.1. Details on Model Training

For our first experiment, we use training data
s1:T−2 to predict actions in sT−1. We then update
the graph and the encodings with the true data from
session sT−1, ultimately testing the trained param-
eters on the previously unseen interactions in sT .
While this means that past data from the training set
is part of the input to the test, this most accurately
follows what a real application would do. An al-
ternative strategy, not followed in this paper, would
be to test the parameters on a completely separate
dataset (e.g. a different month).

When training the model to identify future inter-
actions, we follow a negative sampling strategy to
address the quadratic complexity of possible user-
repository interactions. For every future interac-
tion, we sample 12 incorrect repositories and use
these to train the algorithm to distinguish between
them and the correct repository. When testing the

1https://www.githubarchive.org/

Table 2: Results of the information sharing task. Precision and
recall are percentages. For the average rank, a lower number is
better. For all other measures, higher is better.

a = all µRank Pre@1 Rec@5 Rec@20

LR 56.25 58.02 53.82 65.70
NN 49.39 65.89 57.68 70.09
MIP-DOI 52.41 56.02 54.19 67.63
No DOI 51.54 57.69 55.09 68.75

a = ADD µRank Pre@1 Rec@5 Rec@20

LR 14.95 76.84 89.25 93.86
NN 14.24 83.38 91.17 93.86
MIP-DOI 21.40 70.30 87.52 91.75
No DOI 24.54 53.41 76.20 88.48

a = DES µRank Pre@1 Rec@5 Rec@20

LR 24.76 73.36 83.62 88.94
NN 23.54 81.07 86.64 89.51
MIP-DOI 39.16 71.26 82.61 87.36
No DOI 24.90 67.05 81.90 88.22

a = PAS µRank Pre@1 Rec@5 Rec@20

LR 117.27 10.28 13.04 28.80
NN 89.34 12.62 17.75 37.5
MIP-DOI 107.14 13.08 15.58 28.62
No DOI 91.34 13.08 15.22 36.05

algorithm, we compute the likelihood for the cor-
rect case as well as 500 additional repositories for
1, 000 users (the sampling numbers are chosen to
balance compute time and accuracy of the algo-
rithm). We additionally normalize every feature in
X to z-scores to be able to compare the magnitude
of different Θi.

The results shown for the NN model are for a
neural network architecture that uses a two-layer
feed-forward neural network with a tanh activation
function and 25 hidden states. As user encoding,
we use the autoencoder with an encoding size of 5,
and γ = 0.9. These parameters were selected for
their performance on a validation set.

For the success prediction task, we use 70% of
repositories to train the models, and 10% to opti-
mize hyperparameters. The remaining 20% of the
data comprises the held-out test set for which we
report results. For the HMM model, we compute
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Figure 3: The trained coefficients of the logistic regression for predicting each of the interaction types.

results for models with 3-50 hidden states, finding
that a model with 5 hidden states gives optimal re-
sults, which we report.

6. Results

6.1. Predicting Users’ Actions

The results of the information sharing tasks are
shown in Table 2. Our proposed non-linear neu-
ral architecture proves to perform best for most of
the tasks, showing an improvement in precision of
over 8% compared to the logistic regression in the
task to predict all interactions. The results also
show that the MIP-DOI algorithm maintains com-
petitive performance despite its limited number of
features. Our approach without metrics from MIP-
DOI shows strong performance as well. This indi-
cates that our proposed metrics are as informative
as those from MIP-DOI, with the combination of
them working best.

The results also show a clear divide between the
performances of predicting active and passive in-
teractions. Intuitively, that means that while it is
comparatively easy to identify that Alice will con-
tinue to contribute to Foo, it is hard to identify a
new project that Alice will likely watch. To fur-
ther investigate this divide, we show the parame-
ters of the logistic regression for each task in Fig-
ure 3. Due to the normalization of input features to
z-scores, we can directly interpret and compare fea-
tures with each other. We observe that the strongest

Figure 4: A two-dimensional t-SNE representation of learned
user embeddings for a sample of users.

signal for a prediction in the ADD and DES tasks
is whether a user owns a repository. Additionally,
some of the signals are specific to active or passive
contributions, namely the API, the proximity, and
dimensions 2 and 4 within the user encoding. The
relevance of the API is explained by the fact that
more central repositories tend to be better known
and thus receive more passive attention. This cor-
roborates results that show that popularity plays a
central role within a network when users decide to
follow other users Krafft et al. (2016). Further, our
results confirm those of Tymchuk et al. (2014), who
found that users are generally unaware of other spe-
cific users in their projects. In the resulting param-
eters of our model, neither the connectedness, nor
the measure of how tightly coupled a team is, has
any impact on future interactions.
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Another interesting result shown in the figure is
that the sequential user embeddings have a major
impact on a prediction, even more than the prox-
imity measure. This is especially interesting be-
cause the raw counts of previous interactions a user
had, which are a non-sequential embedding, do not
have the same predictive power. This confirms our
hypothesis that non-sequential models fail to cap-
ture as much information as is available. To further
investigate the learned user-embeddings, we ana-
lyze them by projecting them into two-dimensional
space using t-SNE (Maaten and Hinton, 2008). Fig-
ure 4 shows the projects for a sample of users. The
users represented in blue had actions of type ADD
over 75% of the time. The users shown in red were
particularly active in opening and commenting on
issues (over 20% of the time). The users shown
in purple had actions of type PAS over 40% of the
time. As shown in the figure, similar users tend to
have similar representations. Heuristically, there is
a clear divide between active contributors and pas-
sive/designing users.

6.2. Predicting Successful Teamwork

The results for the teamwork success prediction
task can be found in Table 3. Our primary finding
is that the autoencoded interactions for each repos-
itory have significantly more predictive power than
the HMM average state vectors. Using the LSTM
states as features and a support vector machine to
regress, our median prediction error of the number
of stars and forks for a repository is 5.7. Taking
into consideration that the range of the labels was
nearly 10, 000, this is impressive accuracy. On the
classification task, the support vector machine clas-
sifier is able to determine whether a repository is in
the higher or lower half of success at a statistically
significant (p < .001) rate. This lends credence to
the idea that the encoding learned is information-
ally rich and as such is able to differentiate success-
ful repositories from unsuccessful ones.

We additionally observe that the HMM feature
set has far less predictive power, though models
based on the HMM features still retained a mod-
est ability to discriminate between successful and
unsuccessful repositories. This finding confirms

Table 3: Results of the teamwork success prediction task. For
regression, we report median absolute error; lower is better.
For classification, we report the accuracy rate; higher is better.

Regression HMM RNN

LinReg 23.0 12.3
SVR 22.9 5.7
RFR 22.8 10.0

Classification HMM RNN

LogReg 0.62 0.83
SVC 0.61 0.85
RFC 0.61 0.84

Figure 5: A two-dimensional PCA representation of learned
repository embeddings, showing the clustering of highly suc-
cessful repositories

our hypothesis that the HMM throws away infor-
mation because it is unable to capture relationships
between actions in the sequence that are more than
one time step apart. In contrast, the RNN takes into
account the entire sequence of actions, allowing it
to infer unobserved behavior more correctly, thus
lending it more predictive accuracy.

To further investigate the model’s success, we
perform a dimensionality reduction of the learned
encodings via principal component analysis to two
dimensions. Figure 5 illustrates this reduction,
showing that repositories with stars and forks above
two standard deviations from the mean are tightly
clustered in reduced embedding space.

Finally, when we run the experiments while
withholding information about past star and fork
actions and using SVMs for both regression and
classification, the median regression error increases
to 10.8, while the classification accuracy drops to
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0.74. Although the predictive power of the model
degrades slightly, the learned encoding is still able
to perform at a statistically significant level, despite
omitting any direct information about success in the
repository’s history. Moreover, any real system will
be able to include the number of stars and forks
that a repository has received in the past in order
to predict its future success. In essence, this sec-
ondary experiment shows that the RNN model cap-
tures nonlinear and indirect relationships between
workflows and repository success, learning a use-
ful encoding from high-dimensional and sequential
data in a robust manner.

7. Related Work

Elliott (2016) considers many of the same chal-
lenges that we do, providing a model through which
cooperation emerges in loosely-coupled teams of
any scale. Describing stigmergic cooperation and
a discrete set of possible interactions with a col-
laborative document, his work parallels our inves-
tigation into teams whose members are not nec-
essarily co-located or aware of each other. Cress
et al. (2013) specifically consider Wikipedia, study-
ing users’ preferences and their relation to knowl-
edge creation, developing network models for con-
tribution, and describing the shift in Internet culture
that made large-scale collaboration possible. There
have additionally been studies that investigate dif-
ferent graph representations for collaboration on
LCPs (Biazzini and Baudry, 2014; Tymchuk et al.,
2014). Most related to our work is a study by Thung
et al. (2013) that defines a graph comprising users
and repositories and computes metrics about indi-
vidual teams from the information about which user
contributed to which project. By computing page-
rank statistics, the model identifies the most influ-
ential users and projects. However, this work does
not consider the findings’ application to the TILLT
problem. Lima et al. (2014) also analyze GitHub as
a social network, focusing on the follower dynamic.
They treat the GitHub user base as a large directed
graph in which an edge represents a user who fol-
lows another user. Their findings indicate that col-
laboration on GitHub is rare, since most projects
only have one active contributor. Moreover, they

find that there is no correlation between the active-
ness of a user and their number of followers, or be-
tween activeness of a repository and the number of
stars it has. A similar study by Wu et al. (2014) cor-
roborates this result using another large code repos-
itory (Homebrew), showing that collaboration does
not lead to people following each other. The sec-
ond part of our model is the computation of a single
vector that describes sequential user-behavior.

A study by Kopeinik et al. (2017) used LDA to
classify user behavior to enhance collaborative fil-
tering. The idea of autoencoders to learn a repre-
sentation has previously been used to study behav-
ior of smart phone users (Rajashekar et al., 2016).
However, our approach to augment an interaction
graph with encoded user behavior to improve in-
formation sharing is novel, as is our application to
predicting repository success.

8. Conclusion

In this paper, we have presented the TILLT prob-
lem, an extension of information sharing problems
to a multi-team setting. We proposed a novel com-
bination of sequential encoding of past user be-
havior and an interaction graph to identify rele-
vant teams for different users and interaction types.
Our results show that this approach can identify ac-
tual future interactions with a higher accuracy than
comparative approaches. Additionally, we showed
that an action-encoding on a per team basis can be
applied to predict whether a team is successful.

In a future extension of this work, our model
could be augmented with more information for both
nodes and edges. Further testing could give insights
into the amount of data necessary to make correct
predictions without artificially restricting the data
to active users and established repositories. Ad-
ditionally, a test with real-time GitHub data could
help to better understand the actual information that
should be shared with individual users for each in-
teraction type. The results could be implemented
as a browser add-on that might help users to keep
an overview of their current and future projects. It
could also monitor repositories over time and guide
users’ contributions after predicting the types of in-
teractions necessary to lead projects to success.
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