Content-Blind Learning on Social Networks

Aron Szanto !

Abstract

As the locus of social discourse shifts to the
Internet, characterizing the dynamics of social
media networks is a key problem in domains
from politics to security. While learning on net-
works traditionally involves graph feature ex-
traction, recent work has considered whether
graph kernel methods perform better due to their
topologically-rich encodings of a network. In
this paper, we build a novel dataset of Twitter net-
works around a wide variety of news articles, ex-
tracting data related to the information diffusion
emanating from each story. We find that, blind
to the content of an article and using only infor-
mation from the network surrounding it, we can
accurately classify both the topic and the politi-
cal leaning of the article. Most significantly, we
demonstrate that graph kernel techniques far out-
perform baselines set by feature extraction meth-
ods, with superior computational efficiency.

1. Introduction

As social media becomes the world’s largest source of
real-time news and information, understanding the ways in
which different types of information diffuse through these
systems becomes vitally important. Many social media
platforms like Twitter and Facebook are well-represented
by networks whose nodes are users and whose edges are
aspects of their interactions. While much work has been
done on the separate fields of network classification and so-
cial media network mining, there is little research at their
intersection. Because of the power that social media holds
in arenas from politics to security, deciphering the dynam-
ics of information flow through these networks has critical
implications for predicting major societal events like pres-
idential election outcomes and terrorist attacks.

We focus on discerning the latent features of a news article,
knowing only information about the topology of the social
network that forms around it. We term this content-blind

"Harvard University, Cambridge, MA, USA.

Figure 1. Article Networks: New York Times and Breitbart News

prediction. Within the content-blind domain, no linguis-
tic, temporal, or user-identifying information is known to
the predictor. For example, a model attempting to deter-
mine the political leaning of two articles whose networks
are shown in Figure 1 would know nothing but shapes of
the networks corresponding to the underlying news articles.
We posit that models that use such information to predict
the underlying features of a social network have several
attractive features, including portability across languages,
easy application to a wide variety of problems, and robust-
ness to adversarial agents in the network.

Our contribution is to compare two methodologies for su-
pervised learning on social media networks, bringing both
feature-based and graph kernel-based techniques to bear on
a variety of topic classification tasks. Building the social
networks that form around a variety of news articles, we
first use standard network feature predictive models as a
baseline performance indicator for the task of gleaning in-
formation about the underlying stories. Then we leverage
graph kernel learning models to capture information-rich
topological encodings of the networks in an attempt to im-
prove on the baseline. In this domain, a model that is better
than at-chance guessing for a particular task can be inter-
preted as successfully using only features of the informa-
tion diffusion network to predict the underlying attributes
of the target content.

The remainder of this paper will proceed as follows: Sec-
tion 2 describes related work in network classification,
graph kernels, and learning on social networks. Section
3 contextualizes the content-blind domain and defines our
supervised learning task over news articles and Twitter net-
works. Section 4 describes our data collection and cura-
tion methodology. Section 5 details our technical approach

Content-Blind Learning on Social Networks

in two parts: 5.1 specifies the network feature models we
build as a baseline, and 5.2 provides an overview of graph
kernel methods before defining the particular algorithms
we employ. Section 6 presents our results, comparing the
baseline and graph kernel approach along dimensions of
computational efficiency and predictive power. Finally,
section 7 concludes and discusses extensions of our work
to tangential areas of research.

2. Background and Related Work

Much of the research in network classification and graph
kernels has been done in the field of computational biology
in order to understand protein structures, biological com-
pounds, and gene regulation.

Graph kernel methods involving walks compare two graphs
in terms of the paths taken by random walks on those
graphs. Borgwardt et al. (2005) make use of random walk
graphs kernels to predict protein function. Kashima et al.
(2003) use similar methods for two tasks, classifying one
set of biological compounds by carcinogenicity and an-
other by mutagenicity.

Another type of graph kernel makes use of subgraph simi-
larity: Kriege & Mutzel (2012) apply this method to a host
of chemical compound datasets. A similar graph kernel that
counts matching cyclic patterns was used for the classifica-
tion of molecules by Horvéth et al. (2004).

Graph kernels using subtree patterns developed by Ramon
& Girtner (2003) involve counts of matching structures
within subtrees for pairs of graphs. These types of graph
kernels have also been successfully applied to chemical
compound classification tasks (e.g. Shervashidze et al.
(2011), who were the first to introduce the Weisfeiler-
Lehman graph kernel used in this paper).

The literature on the use of graph kernels in social network
classification is sparse. One study in this space develops
so-called deep graph kernels, which are traditional graph
kernels augmented with neural networks, and applies them
to predict Reddit sub-community interactions (Yanardag &
Vishwanathan, 2015). Nikolentzos et al. (2017) use a con-
volutional neural network-based graph kernel that performs
well on a synthetic dataset but has more limited success
on real-world social network datasets. Though relevant,
neither of these studies makes a comparison to a baseline
classifier that uses standard features extracted from the net-
works. Thus, it is unclear if their results demonstrate that
graph kernels are effective.

3. Problem

The problem space is defined as follows: each data point z;
is a tuple (a;,n;), where a; is an abstract piece of content

with arbitrary underlying features and n; is a directed graph
characterizing its diffusion. In this paper, we refer to a; as
an article and define the set of articles as A, while the set
of networks is 2. When an article and a network are linked
like this, we say that the network surrounds the article.

n; is defined as (V;, E;, L;), where V; is the set of entities
that interacted with a;; (u,v) € E; iff u € V;,v € V;, and
u had an interaction with v that involved a;; and L; : V; —
Y is a labeling function that assigns labels (letters in a finite
alphabet X0) to nodes. Thus, L;(v) is the label of node v in
network n;. We define the size of n; as the cardinality of
the set of nodes, |V;|. In our paper, a v € V; that interacts
with a; is a tweet about a news article a;, and a directed
edge (u, v) denotes that u and v both tweeted about a;, and
v is a retweet of u.

A tag is a value associated with an article reflecting some
aspect of its content. An article a;’s tag is y(a;) € A. For
example, in one of our models, we define the tag y(a;) as an
indicator for whether article a; is written about a political
topic, and the corresponding A = {0, 1}.

Thus, the problem of interest is as follows: given a set of
N training examples (y(a1),n1), ..., (y(an),ny),learn a
function F' : @ — A to predict the tag y(a;) for article a;,
looking only at the network n; associated with the article.

In our dataset, one (a,n) pair consists of a news article
linked with the Twitter network that surrounds it. Each ar-
ticle is tagged in two ways: whether the article is political
or not, and whether (conditional on the article’s being polit-
ical') the article’s source is a liberal or conservative media
outlet. We discuss the assignment of node labels in Section
5.2.2, as their use is confined to graph kernel methods.

We thus define two concrete tasks related to the formal
problem above: given just the social network that surrounds
a news article, predict whether the article is political in na-
ture (POL) and whether the article is liberal or conservative
(BIAS). We describe the construction of this dataset in Sec-
tion 4.

4. Data Collection and Curation

We aggregated URLs and other metadata for 10351
news stories in the 7-day period from 11/23/2017 to
11/29/20172. We tagged an article as “political” if and
only if the item had metadata that included one of the
strings in the set {‘clinton’, ‘elect’, ‘democrat’, ‘republi-
can’, ‘trump’, ‘senate’, ‘congress’, ‘bill’, ‘politic’, ‘legis-

!This condition is important because we would, for example,
expect a sports article from liberal and conservative sources not
to differ significantly based on the political leaning of their orga-
nizations.

2via NewsAPI (https:/newsapi.org)

Content-Blind Learning on Social Networks

lat’, ‘gop’, ‘g.0.p’, ‘government’, ‘campaign’, ‘vot’, ‘bal-
lot’, ‘conservative’, ‘liberal’, ‘progressive’, ‘libertarian’}.
We gathered all the political articles and for each, tagged
them as liberal or conservative by consulting findings from
Mitchell et al. (2014), a large-scale Pew Research study
that labels a news outlet as liberal if its readers are more
liberal than the average internet user and conservative if
its readers are more conservative than the average internet
user. We omit examples from outlets not expertly catego-
rized in this manner.

Next, for each article, we queried Twitter for tweets that in-
cluded a link to the article. We built a graph per article by
representing tweets about the article as nodes, and drawing
edges where one tweet was a retweet of another. We fil-
tered our results to include only those networks with more
than 50 nodes, and removed networks whose set of tweets
included retweets of a particular tweet but not the tweet
itself?. Ultimately, we were left with with 2652 tweet net-
works, each tagged as political or non-political, and 1842
tagged as liberal or conservative. From here, we construct
four datasets. For each tag type (POL/BIAS), we create
both a class-balanced version and a class-unbalanced ver-
sion. For the class-balanced version, we use all the exam-
ples in the minority class (non-political and conservative,
respectively) and randomly sample from the majority class
to give a class-balanced dataset. For the class-unbalanced
version, we use all examples in both classes. We report the
final number of examples in each class for each problem in
Tables 1 and 2.

Table 1. Class Sizes for Balanced and Unbalanced POL Datasets

Label Unbalanced Balanced
Political 936 936
Not Political | 1716 936

Table 2. Class Sizes for Balanced and Unbalanced BIAS Datasets

Label Unbalanced Balanced
Liberal 1444 398
Conservative | 398 398

5. Model

We detail two methodologies for extracting information
from a social network. In the first, we tabulate a fea-
ture vector per network corresponding to standard statistics
about the nodes and their connections. We tune a variety
of models using supervised learning techniques to estab-

3This is an indication that our results were truncated by the
Twitter API for that particular query.

lish a baseline performance against which to compare more
sophisticated algorithms. The second technique uses the
Weisfeiler-Lehman (WL) (Shervashidze et al., 2011) graph
kernel to compute a high-dimensional comparison between
each pair of graphs in the dataset in order to learn a linear
classification function in the kernel space.

Our analysis considers four datasets, as described above.
For each, we randomly assign 90% of the data to a train-
ing/validation set and 10% of the data to a test set. We
apply the network feature and graph kernel methodologies
to each.

5.1. Network Features

For a network n;, we construct a per-example concatenated
vector of graph features that reflect attributes of its shape.
These features are of several types and include:

e Basic: Density, Number of Nodes and Edges
o Connectivity: Mean/Max Degree Connectivity

e Degree Centrality: Mean, Max, Std., Skew of In- and
Out-Degree Centrality

o Closeness Centrality: Mean/Max
e Cliques: Size and Number of Max Cliques

e Components: Number of Connected Components

For our baseline performance metrics for both the POL and
BIAS tasks, we used logistic regression (LR), support vec-
tor machines (SVM), random forests (RF), and multilayer
perceptrons (MLP) for classification, representing a wide
variety of model types and complexities. Hyperparameter
tuning for the regularization parameter of SVM and LR,
for the SVM kernel choice, and for the several parameters
of RF and MLP were done using 10-fold cross validation
on the training/validation set. We used the L-BFGS solver
with at most 1000 epochs for MLP and the liblinear solver
with at most 100 epochs for LR.

5.2. Graph Kernels
5.2.1. OVERVIEW

While network feature models attempt to extract rele-
vant statistics based on network attributes, graph kernels
are designed to take the full shape of a network into
account. Graph kernels are algorithms for computing
a topologically-rich similarity metric between networks.
Consider the task of determining the similarity between
the two small graphs shown in Figure 2. While to the hu-
man eye the graphs seem nearly identical, it is a non-trivial
problem to compute network similarity at scale. Indeed,

Content-Blind Learning on Social Networks

Figure 2. GKs compute a rich comparison between two graphs

it is unclear which standard metrics could be computed
over the two graphs in Figure 2 to give insight into their
near-isomorphism. Graph kernels move beyond obtaining
these traditional features from a graph and instead focus on
higher-order similarities like identical subgraphs and simi-
lar path patterns. Given a dataset, once all pairs of graphs
have been compared using to a graph kernel, the resulting
matrix may be fed into a kernelized learning model to com-
pute a linear separation between graphs of different types.

Formally, a graph kernel implicitly represents a network
X € Q as a vector ¢(X) in a Hilbert space H (Scholkopf
& Smola, 2001). A graph kernel k : Q? — R is a positive
semidefinite function such that given a mapping ¢ : 2 —
‘H and a network pair (X', X”), the kernel value is equal to
the Hilbert-space inner product:

(X, X)) = ($(X), p(X"))n

This inner product represents a similarity metric between
two graphs; intuitively, a graph kernel attempts to find
shape-preserving representations of two graphs in 4 and
determine their distance from each other.

To use a graph kernel in a classification model, we arrange
our data as a sequence of graphs G, ..., G, and construct
a matrix K such that K;; = k(G;, G;). This matrix is the
basis for kernelized learning techniques like SVMs, Gaus-
sian Processes, and Kernel PCA.

Graph kernels generally have one of three flavors, corre-
sponding to their core network algorithm: random walks,
shortest paths, and subtrees. We find that average paths
on the Twitter networks are very short (the median longest
path is 3), so we would expect random walk and short-
est path approaches to perform poorly due to their inabil-
ity to encode information about graphs whose paths are
highly invariant. Thus, we choose a state-of-the-art sub-
tree method, the Weisfeiler-Lehman (WL) kernel, which
we hypothesize will capture important information about
the network structure despite the relatively short average
paths thereof.

5.2.2. WEISFEILER-LEHMAN KERNEL

We apply the Weisfeiler-Lehman kernel (Shervashidze
et al., 2011) to the domain of social network classifica-
tion. The WL kernel is a subtree-based approach that mea-
sures the similarity of labeled graphs by iteratively com-
paring common labels, merging labels by edge, then com-
paring again. It derives its name and underlying technique
from the Weisfeiler-Lehman test of isomorphism between
graphs, which it applies iteratively to compute a metric for
how “close to” (or far from) isomorphism two graphs are.

The computation of the WL kernel begins with a graph
G € () and a choice of a number of iterations p. We
proceed by iteration, with each indexed by ¢. In itera-
tion i, we associate a label ¢;(v) € ¥ and a multiset of
strings M;(v) for each vertex v € V. To begin, we as-
sign fo(v) to L(v) and My(v) to the set of the labels of
v’s neighbors, i.e., My(v) = {L(V)|v" € N(v)}, where
N(v) = {v'|(v,v") € E}.

For iteration 4, we set M;(v) = {£;—1(v")|v" € MN(v)}.
For each v, we sort and concatenate the strings M;(v) to
obtain s;(v). Next, we prefix s;(v) with £;_1 (v), the labels
from the previous iteration. Last, we compress the prefixed
s;(v) by encoding it with a hash h : ¥* — 3, stipulating
that h(s;(v)) = h(s;(w)) <= s;(v) = s;(w) (e, hisa
perfect hash function*). We set £;(v) = h(s;(v)) for all v.

At each iteration ¢, the label ¢;(v) of a node is thus a dis-
tinctive encoding of a sequence of merges of labels from
its neighbors in each iteration. At the end of p iterations,
we compute ¢; (G, 0;5), which is a count of the number of
times the label o;; occurs in the labels of G at iteration 7.
Formally, let the set of labels that occur in the ¢;(v) associ-
ated with G at iteration ¢ be 3; = {¢;(v)|v € V'}. Assume
without loss of generality that ¥; = {oy0,...,05x,(} is
sorted. Then we say that the mapping ¢; : €2 X ¥ — N that
represents the number of times that the label o;; occurs in
pIF

Finally, define
QS(G) = (CO(G7 000)7 s 7CO(G7 UO|Z1\)a
.. .CP(C;7 Upo, e Cp(G, O'p|2p|)>

That is, the concatenated values of the label counts for each
label at each iteration. Then the WL kernel is computed as

k(G,G') = ¢(G)"$(C")

Figure 3 (Shervashidze et al., 2011) shows the computation
of a WL kernel with p = 1 for a small graph. Intuitively,

“While this is theoretically impossible due to the pigeonhole
principle, it is a trivial condition for modern 32- or 64-bit comput-
ers to guarantee with near certainty. Indeed, our implementation
simply hashes character string labels to integers.

Content-Blind Learning on Social Networks

1st iteration
Result of steps 1 and 2: multiset-label determination and sorting

b
Ist iteration
Result of step 4: relabeling

Given labeled graphs G and G’

3 L
a D @ 3
© G © @ G
a
Ist iteration
Result of step 3: label compression

“wo— 6 345 —— GD‘Q 0,@
23 — 41135 —— 11 q 3

235 —— 8 41235 —— 12

5 —— 9 5m —— 13

o BCIRCIPI
c

End of the lst iteration
Feature vector representations of G and G’

p o l®=21,1,1,1,2,0,1,0,1,1,0,1)

Ptsubired

(&) N —
@ (G)=(1,21,1,1,1,1,01,1,0,1,1)

?,

Counts of Counts of
original compressed
node labels node labels

10} , ,
Ky GG)=<gy, . (G), g, . (G)>=11.

e

Figure 3. WL Kernel Computation for One Iteration

we get higher numbers for this value if the graphs have sim-
ilar behavior during the merges, i.e. their shapes are similar
around a variety of nodes. For p large, a high kernel value
means that not only are the graphs similar around pairs of
nodes, but that entire regions are similar, since the inher-
ited labels from several hops away are similar. Of course,
k(G,G") is maximized when G is isomorphic to G’, and
thus their labels are identical for arbitrary iterations.

The time complexity to compute ¢(G) as described above
is linear in the (maximal) number of edges m = |E|. Thus
calculating k for all pairs of N graphs for p iterations is
an O(N?mp) algorithm. In our implementation, however,
we cache values of ¢(G) for each graph in the dataset be-
fore computing the kernel matrix, reducing our run time to
O(Nmp), linear in the size of our dataset.

Our implementation is in Python, using the networkx (Hag-
berg et al., 2008) package, based on (Sugiyama et al.,
2017). Once a kernel matrix was computed for a prob-
lem, we used an SVM model to learn a linear separation
between classes for the task at hand. We use 10-fold cross
validation on our training/validation set to determine both
the optimal number of WL iterations p and the SVM reg-
ularization parameter. We use a node’s degree as its initial
label (i.e., ¥, L(v) = |9(v)]).

Finally, note that the set of nodes are disjoint across all net-
works, since the tweets in one network explicitly mention
the article associated with that network®. Thus this labeling
does not leak any relevant information about a node’s iden-
tity, since even if the same user’s tweets were represented

31t’s theoretically possible that one tweet mentions more than
one article, but we did not find any such examples in our dataset.

Table 3. Classification Performance. Best performers for each
problem and for each metric are bolded. Metrics for the WL ker-
nel are underlined.

BIAS-B acc pre rec F1
LR 0.65 0.67 0.63 0.65
SVM 0.70 0.75 0.64 0.69
RF 0.69 0.72 0.63 0.68
MLP 0.71 0.95 046 0.62
WL 0.93 091 098 0.94
BIAS-U acc pre rec F1
LR 0.80 0.80 0.99 0.88
SVM 0.77 0.77 1.00 0.87
RF 0.82 0.94 0.95 0.91
MLP 0.77 0.77 1.00 0.87
WL 0.90 088 0.99 0.93
POL-B acc pre rec F1
LR 0.67 0.71 0.61 0.66
SVM 0.68 0.68 0.64 0.66
RF 0.67 0.71 0.60 0.65
MLP 0.67 0.73 0.58 0.64
WL 0.76 0.89 0.61 0.72
POL-U acc pre rec F1
LR 0.74 0.63 044 0.52
SVM 0.71 0.65 0.39 0.49
RF 0.74 0.61 0.53 0.57
MLP 0.74 0.59 0.58 0.58
WL 0.82 0.85 0.65 0.74

in two graphs, they would only theoretically share any in-
formation if they had exactly the same number of retweets.

6. Results

We refer to our political and bias tasks with class balancing
and no balancing as POL-B, POL-U, BIAS-B, and BIAS-
U, respectively. We report accuracy, precision, recall, and
the F1 score for the network feature baseline and the WL
kernel together in Table 3.

We find that the WL kernel significantly outperforms the
baseline accuracy on all tasks and nearly all metrics as
well. On the balanced BIAS task in particular, the graph
kernel approach demonstrates its effectiveness, predicting
the political leaning of an article at 93% accuracy simply
by looking at the topology of the network surrounding it.
In all, the kernel approach represents a 10-31% improve-
ment on the network feature extraction methods. Notably,
our graph kernel model maintains a high F1 score indepen-
dent of the balance of classes in the dataset. This suggests
that the model holds significant predictive power unrelated
to idiosyncracies in the class distribution.

The features that were the most predictive for our standard

Content-Blind Learning on Social Networks

Table 4. Optimal Hyperparameters: WL-p and SVM-C'

Parameter BIAS-B. BIAS-U POL-B POL-U
WL-p I I I I
SVM-C' 0.04 0.04 0.09 0.09

models in the BIAS task were related to connectivity, while
those that were the most predictive for the POL task were
related to centrality. This indicates that in traditional terms,
the political leaning of an article affects the behavior of
average users more, and the topic of an article affects the
behavior of high-influence users more.

The results of the cross validation for optimizing the num-
ber of WL iterations p and SVM regularization parameter
C are given in Table 4. The finding that one iteration of
WL was sufficient for high predictive power is significant
and belies a profound result about classifying Twitter net-
works. Recall that at iteration ¢ = 1, the label for a node v
is

1(v) = R(L(v)[[s1(v))

where s1(v) is the sorted and concatenated M;(v) =
{L(W")" € 9M(v)}. Thus, each label at iteration 1 was
passed information from the nodes at most one hop away. If
one such label merging operation from neighbors to nodes
is sufficient to detect similarity (as our results demonstrate),
then the shapes of the local neighborhood structures around
single nodes in a social network are highly predictive of
the article that the network surrounds. Moreover, the result
lends weight to the hypothesis that subtree methods will
both perform and scale well when applied to Twitter net-
works, since they do not require long paths to differentiate
between graphs. We anticipate that because average paths
are short in these networks, graph kernels based on random
walks or shortest paths will tend to underperform subtree
kernels. However, future work will have to test this intu-
ition by comparing WL against a variety of other kernel
methods.

One of the major criticisms of graph kernels is that they
do not scale; the graph isomorphism problem at the heart
of many kernel algorithms has no known polynomial time
algorithm. Thus, many graph kernels have runtimes that
are cubic or worse (Vishwanathan et al., 2010). However,
the domain of social networks is a good fit for graph ker-
nels, since the graphs are significantly smaller than those
in traditional graph kernel applications like biochemistry.
In Table 5 we present runtime results for our algorithms,
finding that our linear implementation of the WL kernel is
more than twice as fast as the network feature extraction
routine.

Our last result regards the convergence of our models. We
demonstrate that because of the small amount of data avail-

01 0.2 03 0.4 05 0.6 07 0.8
Proportion of Data Seen

Figure 4. Model Convergence: BIAS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Proportion of Data Seen

Figure 5. Model Convergence: POL

able, the WL kernel model did not reached peak perfor-
mance on either the POL or the BIAS task. By varying
the size of our training sets, we show that performance
increases as the model consumes more training data, but
that it has not yet converged. However, a similar experi-
ment demonstrates that it is less obvious that the models
used to compute the baseline have not converged for both
tasks. This finding further confirms the superiority of the
WL graph kernel in the Twitter network domain and bodes
well for future work involving larger datasets. Figures 4
and 5 demonstrate the disparity between WL kernel and
network feature model convergence for the BIAS and POL
tasks, respectively.

7. Conclusion

In this paper, we defined the problem of identifying at-
tributes of online articles using content-blind techniques.
We constructed a novel real-world dataset composed of
news articles and their associated Twitter networks, build-

Table 5. Runtime: Time to Compute Network Features and Graph
Kernels (seconds)

POL BIAS
Network Features 60.4 50.4
WL Kernel 29.1 22.7

Content-Blind Learning on Social Networks

ing both network feature models as baseline performance
indicators and a fast implementation of the Weisfeiler-
Lehman graph kernel. Testing on both class-balanced and
class-unbalanced datasets, we demonstrated that the WL
kernel outperforms the baseline significantly in accuracy
by up to 31%, and in runtime efficiency by up to 108%. Fi-
nally, we interpreted our results topologically, arguing that
analyzing Twitter networks at the node-neighborhood gran-
ularity is important for content-blind classification, and
demonstrating mathematically that the WL kernel does ex-
actly this.

Our findings demonstrate that there is information about
the content of an article encoded in the shape of the net-
work surrounding it that is rich enough to inform predic-
tion in at least two arenas as disparate as topic and politi-
cal leaning. The implications are numerous: can topology
be used to classify networks by the sentiment of their in-
terior article? By truthfulness? While the content-blind
domain complicates the article classification task signifi-
cantly, it has an important advantage in that a successful
model is highly robust to adversarial actors. It is relatively
easy to reverse-engineer a linguistic model for topic or ve-
racity prediction in order to inject content intended to fool
the classifier. However, doing the same in the face of a
graph model would require orchestrating a coordinated at-
tack in which a critical mass of network participants must
change their behavior to pass off an article as a different
type from its true one. In this way, our findings may be used
to augment non-content-blind models as a security measure
against malicious agents in the network.

Other future work might include testing other types of
graph kernels against the baseline set by WL; while the
standard kernels based on random walks and shortest paths
should be a starting point, more exotic kernels that involve
deep neural networks (Nikolentzos et al., 2017; Yanardag
& Vishwanathan, 2015) might be explored. Because of our
findings regarding model convergence, we believe that the
WL kernel may perform even better if given more train-
ing data; as such, further experimentation is necessary with
larger datasets. Development of further prediction tasks
is another important avenue of research— multi-class topic
classification problem that extends our POL task is one pos-
sibility; another is an exploration into whether networks
surrounding articles that were written to deceive are topo-
logically different than those surrounding articles written
to inform. Yet another area of future research is to intro-
duce a notion of time; truncating edges based on when they
formed can simulate performing the classification tasks in
real time, allowing insight into how prediction accuracy
improves with the evolution of the network.

References

Borgwardt, Karsten M, Ong, Cheng Soon, Schonauer, Ste-
fan, Vishwanathan, SVN, Smola, Alex J, and Kriegel,
Hans-Peter. Protein function prediction via graph ker-
nels. Bioinformatics, 21(suppl_1):i47-i56, 2005.

Hagberg, Aric A., Schult, Daniel A., and Swart, Pieter J.
Exploring network structure, dynamics, and function us-
ing NetworkX. In Proceedings of the 7th Python in Sci-
ence Conference (SciPy2008), pp. 11-15, Pasadena, CA
USA, August 2008.

Horvath, Tamas, Girtner, Thomas, and Wrobel, Stefan.
Cyclic pattern kernels for predictive graph mining. In
Proceedings of the Tenth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
KDD °’04, pp. 158-167, New York, NY, USA, 2004.
ACM. ISBN 1-58113-888-1. doi: 10.1145/1014052.
1014072. URL http://doi.acm.org/10.1145/
1014052.1014072.

Kashima, Hisashi, Tsuda, Koji, and Inokuchi, Akihiro.
Marginalized kernels between labeled graphs. In Pro-
ceedings of the 20th international conference on ma-
chine learning (ICML-03), pp. 321-328, 2003.

Kriege, Nils and Mutzel, Petra. Subgraph matching kernels
for attributed graphs. arXiv preprint arXiv:1206.6483,
2012.

Mitchell, Amy, Gottfried, Jeffrey, Kiley, Joce-
lyn, and Matsa, Katerina Eva. Political po-
larization and media habits, Oct 2014. URL

http://www. journalism.org/2014/10/21/
political-polarization-media-habits/.

Nikolentzos, Giannis, Meladianos, Polykarpos, Tixier, An-
toine Jean-Pierre, Skianis, Konstantinos, and Vazirgian-
nis, Michalis. Kernel graph convolutional neural net-
works. arXiv preprint arXiv:1710.10689, 2017.

Ramon, Jan and Gértner, Thomas. Expressivity versus ef-
ficiency of graph kernels. In Proceedings of the first in-
ternational workshop on mining graphs, trees and se-
quences, pp. 65-74, 2003.

Scholkopf, Bernhard and Smola, Alexander J. Learning
with Kernels: Support Vector Machines, Regularization,
Optimization, and Beyond. MIT Press, Cambridge, MA,
USA, 2001. ISBN 0262194759.

Shervashidze, Nino, Schweitzer, Pascal, Leeuwen, Erik
Jan van, Mehlhorn, Kurt, and Borgwardt, Karsten M.
Weisfeiler-lehman graph kernels. Journal of Machine
Learning Research, 12(Sep):2539-2561, 2011.

http://doi.acm.org/10.1145/1014052.1014072
http://doi.acm.org/10.1145/1014052.1014072
http://www.journalism.org/2014/10/21/political-polarization-media-habits/
http://www.journalism.org/2014/10/21/political-polarization-media-habits/

Content-Blind Learning on Social Networks

Sugiyama, Mabhito, Ghisu, M. Elisabetta, Llinares-Lpez,
Felipe, and Borgwardt, Karsten. Graphkernels: R and
Python packages for graph comparison. Bioinformat-
ics, pp. btx602, 2017. doi: 10.1093/bioinformatics/
btx602. URL +http://dx.doi.org/10.1093/
bioinformatics/btx602.

Vishwanathan, S. V. N., Schraudolph, Nicol N., Kondor,
Risi, and Borgwardt, Karsten M. Graph kernels. J. Mach.
Learn. Res., 11:1201-1242, August 2010. ISSN 1532-
4435. URL http://dl.acm.org/citation.
cfm?id=1756006.1859891.

Yanardag, Pinar and Vishwanathan, SVN. Deep graph ker-
nels. In Proceedings of the 21th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data
Mining, pp. 1365-1374. ACM, 2015.

+ http://dx.doi.org/10.1093/bioinformatics/btx602
+ http://dx.doi.org/10.1093/bioinformatics/btx602
http://dl.acm.org/citation.cfm?id=1756006.1859891
http://dl.acm.org/citation.cfm?id=1756006.1859891

